Vector Calculus

— Additional Lecture Notes for 01002 Mathematics 1b

Jens Gravesen, jgra@dtu.dk, DTU Compute

January 15, 2024


https://01002.compute.dtu.dk
jgra@dtu.dk

date/time: January 15, 2024/20:45 2 of 112



Contents

1 The real numbers
1.1 Nested interval theorem
1.2 Sequences . ... .. ..
1.3  Supremum and infimum

1.3.1 Limes inferior and limes superior . . . . . ... ... ... ..
1.4 Openandclosedsets . . . .. ... ... .. .. ...
1.5 Exercises . . . . . . .

2 Function of one variable

2.1 Continuity . . . ... ..
2.2 Differentiability . . . . .
2.3 The integral . . . . . ..
2.4 Exercises . . . . .. ...

3 Functions of several variables

3.1 Imtroduction . . . . . . . ...
3.1.1 Quadratic forms in the plane . . . . . . . ... ... ... ...
3.2 Continuity . . . . . . . .
3.3 Differentiability . . . . . . ... o
34 Curvesandlines. . . . . . . . ... Lo
3.5 Integration . . . . . . . ...
3.5.1 Integration in the plane . . . . .. ... ... .. ... ..
3.5.2 Integration in space and higher dimensions . . . . . . . . . ..
3.5.3 Surface integrals . . . . .. ... o oL
3.6 Vectorfields . . . . . .. . .. ...
3.6.1 The divergence theorem . . . . .. ... ... ... ......
3.6.2 Stokes theorem . . . .. .. .. ... .o
3.7 Exercises . . . ...
References

A More on the real numbers
A.1 Ordered fields . . . . ..

A.2 Infimum and supremum

3of 112

10
12
14
16

17
17
22
32
40

41
41
42
43
47
62
64
64
65
66
67
71
75
81

83



CONTENTS CONTENTS

A.3 A construction of the real numbers . . . . ... ... ... ... ... 95
A4 Exercises . . . . . ..o 100
B Properties of normed vector spaces 103
C The trigonometric functions 105
D The logarithm and exponential 107
Index 111

date/time: January 15, 2024/20:45 4 of 112



Chapter 1

The real numbers

You only need to read this chapter if you want rigorous proof for important theorems
about continuous functions. A crucial property of the real numbers is the nested
interval theorem (Theorem 1.2).

In Appendix A we prove that the real numbers is the only ordered field (see
below) that has this property and we also present a construction (or definition) of
the real numbers and prove that the nested interval theorem is valid. You do not
need the read the appendix and can just take the nested interval theorem as an
axiom for the real numbers

1.1 Nested interval theorem

In [1] we had the definition of a field, i.e., we have a set F with an addition “+4”
and a multiplication “-” such that the associative, commutative, and distributive
laws hold, there exists distinct neutral elements 0 € F and 1 € F for addition and
multiplication, respectively, all elements have an additive inverse and all non zero
elements have a multiplicative inverse.

The rational numbers Q, the real numbers R, and the complex numbers C are
all examples of fields and the only ones we will need. In Q and R we furthermore
have an ordering “<”. Given two numbers one of them is smaller than or equal to
the other. This ordering makes Q and R into an ordered field:

Definition 1.1. A field (I, +,-) is an ordered fields if it is equipped with a total
ordering compatible with addition and multiplication, i.e., a relation “<” such that

VaoeF:a<a, reflexive (1.1)
Va,beF:a<bAb<a = a=0b, antisymmetric (1.2)
Va,b,ceF:a<bAb<c¢ = a<c, transitive (1.3)
Va,beF:a<bvb<a, total (1.4)
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CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

compatible with addition and multiplication:

Va,b,ceF:a<b = a+c<b+c, (1.5)
Va,b,ceF:a<bAN0<c¢c = a-c<b-c.

Conditions (1.1), (1.2), and (1.3) is the the definition of an ordering. Together
with condition (1.4) we have the definition of a total ordering. Finally, adding the
two compatibility conditions (1.5) and (1.6) we have the definition of an ordered
field.

Both @Q and R with the usual definition of < satisfies these axioms. But there
are many more examples of ordered fields.

The following statement about the real numbers gives a precise meaning to the
phrase that “there are no “holes” in the real axis”.

blfA '
b2:
z) > | 2 I > I >
as)]
ai ®
1 2 3 4

Figure 1.1: Nested intervals.

Theorem 1.2 (Nested interval theorem). If we have a nested sequence of closed
intervals [ay,b1] 2 [ag,be] 2 -+ D [an,by] 2 ... in R such that b, — a, — 0 for

n — oo. Then their intersection consists of a single number, i.e., there exists x € R

such that (), cylan, bn] = {2}, see Figure 1.1.

We will take this theorem as an axiom for the real numbers, but in Appendix A
we give a construction of R and prove the theorem. We also show that it is the only
ordered field with this property.

The precise meaning of “b,, — a,, — 0 for n — o0” will be given in Definition 1.3
below.

1.2 Sequences

A sequence of real numbers is simply a map F' : N — R, but if let 2, = F(n) then
we will write x1, 29, 3, ..., %y, ... or more compactly (z,)nen-

If (ng)gen is strictly increasing sequence in N, i.e., ny € N and k > ¢ = ng > ny,
then we call (z,, )ren a subsequence of (z,)nen. If we think of the sequence as an
infinite row of numbers then we simply remove some of the numbers.
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CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

Ezample 1.1. The sequence (n?), .y is a subsequence of (n), ., (ny = k?):
1,273, 4, 576758, 9, ¥ 31273431645, 16, +/7——=24,25, - - - .

If £,/ € N then k,¢ > 0 and multiplying with k¥ and ¢ shows that k < ¢ = k? <
EONKC < 2= k2 <02

If x,, approaches a specific value as n gets bigger and bigger we say the sequence
converges. More precisely

Definition 1.3. Let (z,).en be a sequence in R, i.e., amap N —- R : n +— x,. We
say that it converges to x € R and write x,, — x for n — oo if

Ve>03ngeN:VneN:n>ny = |z, —z| <e. (1.7)

The number x is called the limit of the sequence and we write z = lim z,,.
n—oo

Ezxample 1.2. The sequence (%)neN

we can find ng € N such that ng > % For n € N we now have that n > ng = n >
% = % < €. For the first implication we used that the ordering is transitive and for
the second we use that the ordering is compatible with multiplication (we multiply
with £ > 0 on both sides of the inequality).

is convergent with limit 0. Indeed, given € > 0

If a sequence is convergent then the limit is unique:

Theorem 1.4. Let (z,)nen be a sequence in R. If x,2' € R, x,, — = for n — oo,
and x, — x', forn — oo then r = 12'.

Proof. Given ¢ > 0. Choose ny € N such that n > ny = |z, — x| < €¢/2 and
ny € N such that n > ny = |z, — 2/| < ¢/2. If n > max{ng,n,} then we have
|l —2'| = |z —zp+ o, — 2| <|v—x,|+ |2, — 2| <€/24€/2 =¢€. As € was arbitrary
we must have x = . O

If a sequence does not converges then it is called divergent. If a sequence grows
or decreases without bounds it is divergent, but we say that x,, tends to infinity and
write x, — oo for n — oo or lim x, = oo if

n—oo
Vee RdngeN:VneN:n>ny = z, >c. (1.8)
Likewise, we say x, tends to minus infinity and we write x,, - —oo for n — oo or
lim z, = —o0 if
n—oo

Vee RInge N:VneN:n>ny = z, <c. (1.9)

Ezample 1.3. The sequence (n)nen is divergent, but tends to infinity. Indeed, given
C' € R we can find ng € N such that ny > C. Let n € N, if n > ny then n > C' (the
transitive rule).

A subsequence of a convergent sequence is convergent with the same limit:
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CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

Lemma 1.5. If (z,)nen @5 a convergent sequence. Then a subsequence (T, )ken 1S
convergent too with the same limit, i.e., limy_,o0 Ty, = lim,, o0 Ty

Proof. If x = lim,, ,oc x, € R and ¢ > 0 then we can find ng such that n > ny =
|z, —2| < €. As (ng)ren is increasing we have k > ng = ni > ng = |z,, —z| <e. O

Ezample 1.4. As the sequence (-5 )nen is a subsequence of (2),cy and the latter is
convergent with limit 0 we have # — 0 for n — oo.

The same is true if (x,),en tends to plus or minus infinity:

Lemma 1.6. Iflimg_,o (2, )nen tend to plus or minus infinity. Then a subsequence
(@n, Jken does too.

Proof. If lim,,_.., = co and C € R is given then we can find ng such that n > ny =
x, > C. Again we have k > ng = ny > ng = x,, > C. The case lim,_,, = —00 is
similar. ]

Ezample 1.5. As the sequence (n?),en is a subsequence of (n),cy and the latter
tends to infinity we have n? — oo for n — 0.

Limits preserve inequalities:

Lemma 1.7. If (z,)nen 8 a convergent sequence, ¢ € R, and x,, < ¢ for alln € N
then lim,,_ oo T, < c.

Proof. Assume the opposite: lim,_,, x, > ¢. Then we can find ¢ > 0 such that
c+ e < lim,_o x,. We can now find ng € N such that n > ng = x, > c+¢ > ¢,
but that contradicts z,, < c. O

Remark 1.8. Limits do not preserves strict inequalities. Indeed, if z,, = % then
x, > 0, but lim,_,, z, = 0.

If ()nen and (yn)nen are two sequences then we can add them and form a new
sequence (x, 4y, )nen. We can also multiply the sequence (x,,),en by a number ¢ € R
and form the sequence (cx,),en. These two operations turn the space of sequences
into a vector space.

We can also multiply two sequences (z,, )nen and (Y, )nen and form a new sequence

Tn

(ZnYn)nen. If 2, # 0 for all n € N then we can form the new sequence i) Al
neN

these operation preserves convergence:

Theorem 1.9. Let (2,)neny and (Yn)nen be two convergent sequences. Then (z, +
Yn)nen and (T,Yn)nen are convergent with limits

Tim (2, + yp) = lim (z,) + Tim (yn) , (1.10)
lim (z,y,) = lim (z,) lim (y,) . (1.11)
n—o0 n—o0 n—oo
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CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

If x,, #0 for alln € N and lim (z,,) # 0. Then (%) is convergent and
"/ neN

n—oo

1 1
lim (—) S (1.12)
n—=oo \Tp ) oy lim ()

n—o0

Proof. Let x = lim,,_.o, x,, and y = lim,, .o, ¥, and let € > 0 be given .

(1.10): As 2, — = we can find n; € N such that n > n; = [z, — | < §. Similar we
can find ny € N such that n > ny = |y, —y| < 5. If we put ng = max{nl,ng} and
n > ngy then

€ €
[0 o — 2 =yl = (@0 = 2) + (Yo =)l < fon — 2|+ |y —yl < 5+ 5=

Similar

(1.11): As z, — x we can find ny € N such that n > ny = |z, — x| <
we can find ny € N such that n > ny = |y, —y| < 2|I‘+2
such that n > n3 = |y,| < |y| + 1. If we put ng = max{n, na,n3} and n > ny then

€
2lyl+2°
and we can find n3 € N

Tnln — Y| = |TnYn — TYn + TYn — 2Y| < |TuYn — TYn| + |2y, — TY|

€
= |20 — |[yn| + 2|y —y| < (Jy| +1) + !$\§5+—=6-

€ €
2y| + 2 2|z| + 2

(1.12): As z,, » x and x # 0 we can find ny € N such that n > ny = |z, —z| < Elm'

and we can find ny € N such that n > ny = |z,| > Iz\
and n > ng then
1 1

T, X

. If we put ng = max{ny, ng}

e —a| | —xe]  20e— 2 elz?|

]

|| gl [a? 2% 2
Corollary 1.10. If z,, = x € R for n — oo and ¢ € R then cz,, — cx for n — oo.
Proof. Letting y,, = ¢ this follows from Theorem 1.9 (1.11). O

Remark 1.11. This shows that convergent sequences is a subspace of the vector space
of sequences. Furthermore, mapping a convergent sequence to its limit is a linear
map.

Ewample 1.6. As % — 0 for n — oo and # = % . % this gives us a new proof that
=5 = () for n — oco. Using induction it is not hard to show that for any £ € N we
have = — 0 for n — oo.

Corollary 1.12. Ifz, <y, foralln e N, z, xR andy, - x € R forn — oo
then x < y.

Proof. We have z,, —y, < 0so by Lemma 1.7 x —y <0, ie, x < y. O

The nested interval theorem implies that a bounded sequence has a convergent
subsequence.
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CHAPTER 1. THE REAL NUMBERS 1.3. SUPREMUM AND INFIMUM

Theorem 1.13. A bounded sequence of real numbers has a convergent subsequence.

Proof. Let (z,)nen be a bounded sequence in R, i.e., we have a;,b; € R such that
z, € lay,b] for all n € N. We now look at the midpoint ¢ = aT”’ If there are
infinitely many elements of the sequence in the interval [ay, ¢] then we put as = a4
and b, = c¢. Otherwise we must have infinitely many elements of the sequence in
the interval [c, by| and then we put ay = ¢ and by = b;. Continuing this way, halving
the intervals and picking a half with infinitely many elements from the sequence,
we obtain for each n € N an interval [a,, b,] with infinitely many elements from the
sequence and with length b, — a,, = b;T“ — 0 for n — o0o. Theorem 1.2 now tells us
that there is an « € R such that (), y[an, by] = {z}.

We now let n; = 1 and recursively pick ngy1 > ny such that x,, € [ag,byl:
Clearly z,, = z1 € [a1, b;]. Now suppose we have 1 = n; < ng < -+ < ng such that
Tp, € |ak,bx] and consider the interval [agi1, bgr1] we have infinitely many elements
from the sequence in this interval. So {n € N | z,, € [ag41,br1]} \ {1,2,..., 7%}
is non empty and hence contain an element nj,.; we clearly have ng,; > n; and
Trgopq € Plk:1,bk+1y

We have z, z,, € [ak,bg] so |x,, — x| < by —ax — 0 for k — co. Thus z,,, — x
for kK — oo and we have found a convergent subsequence. m

A sequence can have many convergent subsequences with different limits.

FExample 1.7. Consider the sequence in Z x Z depicted in Figure A.1 left. Let
(P, Gn)nen be the subsequence where the points with ¢ = 0 are skipped, i.e., we
have Z x (Z\ {0}) = {(pn,an) | n € N}. Now consider the sequence (22),cn in Q.

We have all possible numerators and denominators so we have Q = { e | n € N}.

Furthermore, as 7;—” = —ZZ; =~ all rational numbers appears infinitely many times in the
n n
P

sequence. So for any rational number o€ Q we can find a subsequence (Z"—‘“) keN
nk

such that Zﬂ = ’(—1’ for all £k € N. We have zﬂ — § for K — oo. In other words, any
Tk Tk

rational number is the limit of a (constant) subsequence of (2*),en. In Exercise 1.6
you will be asked to show that any real number is the limit of a subsequence of
(pn

E:)nEN-

1.3 Supremum and infimum

The intervals [a,b] and ]a,b] have a maximal element namely b. In contrast the
intervals [a, b[ and ]a,b[ do not have a maximal element, still the number b seems
to play a similar role. Likewise the intervals [a,b] and [a, b have a minimal element
namely a while the intervals ]a, b[ and ]a, b] do not have a minimal element, here the
number a seems to play a similar role. If we have an arbitrary subset A C R the
situation is perhaps not so obvious.

Definition 1.14. Let A C R. If there exist a number ¢ € R such that z < ¢ for
all x € A then we say that A is bounded from above and we call ¢ an upper bound.
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CHAPTER 1. THE REAL NUMBERS 1.3. SUPREMUM AND INFIMUM

If there exist a number ¢ € R such that # > ¢ for all z € A then we say that A is
bounded from below and we call ¢ a lower bound.

If ¢ is an upper bound for a set A then all larger numbers are also upper bounds
for A. So we see that the set of upper bounds is an interval. It follows from
Theorem 1.2 that the set of upper bounds has a minimal element:

Theorem 1.15. If A C R is non empty and bounded from above then there exists a
least upper bound called the supremum, i.e., the set of upper bounds has a minimum.
We write

supA=min{ce R |[Vz e A:x <c}. (1.13)

Similar, if A is bounded from below then there is a largest lower bound called the
infimum. We write

infA=max{ceR|VezeA:z>c}. (1.14)

Proof. Let A" = {c € R|Vz € A:x < c} be the set of upper bounds. Both A and
A"PP are assumed to be non empty so we can pick a € A and b € A"PP. If ¢ = b then
max A = a = b = min A"P? and we are done. Otherwise we look at the midpoint
“12;“. If it is an upper bound for A then we put a; = a and b; = ‘IT“’ otherwise we
pick a; € A such that a; > “T“’ and put by = b. We now have a; € A, by € A"PP,
and by —a; < Z’_Ta Continuing this way we either arrive at numbers a,, € A
and b, € A"PP  where a,, = b, and we are done. Otherwise we obtain sequences
g <as < ---<a,<...andby >by>--->b, > ..., where b, — a, < ”2_—”“—>0
for n — oo. By Theorem 1.2 we have [, cyl@n,bn] = {z0} for some zy € R. We
have b, — xy for n — 00 so xg is an upper bound for A. Conversely, a, — x( for
n — oo so there are no smaller upper bound. Thus zy = min A"PP,

The case of the infimum can be proved in the same manner. Or we can note that

inf A = —sup(—A) = —sup{—z |z € A} O
Remark 1.16. If there no upper bound then we write sup A = oo and if there is no
lower bound we write inf A = —o0.

Remark 1.17. If A # () then inf A < sup A. But the set of lower or upper bounds
for () is R so inf ) = oo and sup ) = —o0.

FExample 1.8.
infla, b[= inf[a, b] = a, sup|a, b[= supla, b] = b,
inffN=1, supN = oo,
infZ = —o0, supZ = oo,
inf{%‘m>1}:0, sup{%|x>1}:1,

If f: A— Ris a function then we often use the notation
sup f = sup f(z) = sup{f(z) [ v € A},
BAS

. . . (1.15)
inf f = ;Ielgf(l’) =inf{f(x) | x € A}.
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CHAPTER 1. THE REAL NUMBERS 1.3. SUPREMUM AND INFIMUM

Ezample 1.9. infx>1% = 0 and sup,-, % =1

In particular for a sequence (z,),en in R we have the notation

sup (2, )neny = sup x, = sup{z, | n € N},

nen (1.16)
inf (2, )peny = ingxn = inf{x, | n € N}.

ne

FExample 1.10. infneN% =0 and supneN% =1

Observe that if A C B C R then an upper bound for B is also an upper bound
for A. So sup B is an upper bound for A and hence we must have sup A < sup B.
Likewise inf A > inf B.

1.3.1 Limes inferior and limes superior

If (z,)nen is a sequence in R then we have
{z, |neN}D{z, | n>2}D---D{zp|n>k} D

Hence
SUPp Xy 2> SUP Xy = -+ + 2 SUP Ty 2> SUP Ty =+ -+
neN n>2 n>k n>k+1

and

infz, <infzr, <---<infz, < inf z,<---.
neN n>2 n>k n>k+1

This gives rise to the following definition

Definition 1.18. Let (z,),en be sequence in R. Limes inferior and limes superior
is defined by

liminf z,, = lim inf z, = sup inf z,, , (1.17)
k—ocon>k keN n=k

limsup z,, = lim supz,, = inf supx,, . (1.18)
k—o0 n>k keN n>k

Remark 1.19. Observe that we have lim inf x,, < limsup z,, and

inf x,, / liminfz,, supr, \, limsupz, .
n>k k—o0 n>k k—o00
Ezxample 1.11.
liminfn = oo, limsupn = oo,
1
liminf — =0, limsup— =0,
n n
o 1 . 1
liminf(—-1)"+ — = —1, limsup(—1)"+— =1,
n n
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CHAPTER 1. THE REAL NUMBERS 1.3. SUPREMUM AND INFIMUM

Lemma 1.20. A sequence (x,,)nen in R is bounded from below if and only if lim inf z,,
—o0. It is bounded from above if and only if limsup z,, < co.

Proof. If we have a ¢ € R such that z,, > ¢ for all n € N then inf, >, z, > ¢
for all £ € N and hence liminfz, > ¢ > —oo. Conversely, if liminfz, > —oo
then there exist a £ € N such that inf,>; 2z, > liminfz, — 1. If we put ¢ =
min{xy, s, ..., Tx_1,inf,>p x, — 1} then x, > ¢ for all n € N, i.e., the sequence is
bounded from below. The statement about limes superior is proved similarly. [

Lemma 1.21. A sequence (z,)nen in R is convergent with limit x € R if and only
iof liminf x,, = limsup x,, = x.

Furthermore, x, — oo for n — oo if and only if liminf z, = co and z,, = —o
for n — oo if and only if limsup x,, = —o0.

Proof. Suppose x,, — = € R for n — oco. If € > 0 then we can find ng such that |z, —
x| < € for n > ng. Then z,, € [x —¢€,x+¢€ for n > ng, hence inf,~p, Ty, SUP,,<,,, Tn €
[z—¢,x+¢€] and liminf z,,, limsup x,, € [t —¢,x+¢€]. As € was arbitrary we must have
liminf x,, = limsupz, = x. Conversely, suppose liminfz, = limsupx, = z € R
and we are given € > 0. We can find n; € N such that inf,~,, z, >z —eand n, € N
such that sup,-,,, v, < x+e€. If ng = max{n,,no} then n > ng = x, €lx — €,z +¢[.

If z,, — oo for n — oo and ¢ € R then we can find ng such that x > ¢ for n > nyg.
Then inf,~,, z, > ¢ and hence liminfx, > c. As ¢ was arbitrary we must have
liminf z,, = co. Conversely, if liminf x,, = co and we are given ¢ € R then we can
find ng such that inf,<,, z, > ¢ and hence x,, > c for all n > ny. The proof of the

last statement is similar. O

Lemma 1.22. Let (x,)nen be a sequence in R. Then there exists a subsequence xy,
such that x,, — limint z,, for k — oco. Likewise there exists a subsequence x,, such
that x,, — limsup z,, for k — oo.

Proof. 1If liminf z, € R we let a = inf,,~; z,. Then a;, > —oo and a; — liminf x,,
for k — oo. Choose ny > 1 such that |z,, —a;| < 1. Choose ny > n; such that
%y — an,| < 5. Choose ng > ny such that |z, — an,| < 3 and so on. That is, we
recursively choose nj41 > ny such that |z, o an, | < k%l Then we have that

|2y, — liminf 2, | = |z, — an,_, + an,_, — liminf z,|

<|zp, — an,_,| + |an,_, — liminf z,|

1
< E—i_ lan, , —liminfz,| - 04+0=0, fork— co.
If liminfz, = —oo then (z,)nen is not bounded from below. So we can choose
ny € N such that z,, < —1, can choose ny > n; such that x,,, < —2 and so on. That
is, we recursively choose ny41 > n; such that x,, . < -k —1. Now z,, — —oo for
k — oo.

If iminfx, = oo the statement is Lemma 1.21. The statement about limes
superior is proved similarly. O

date/time: January 15, 2024/20:45 13 of 112



CHAPTER 1. THE REAL NUMBERS 1.4. OPEN AND CLOSED SETS

1.4 Open and closed sets

Definition 1.23. A set U C R is called open if we for all z € U can find a r > 0
such that |z —r,z +r[C U.

So a subset U is open if any point in U can move a little bit to the left and right
and still be in U. We see that an open interval |a, b is open, that R is open and
that () is open.

Arbitrary unions of open sets are open:

Theorem 1.24. If (U;);e; is an arbitrary collection of open sets in R then their
union J;c ; Uj is open. (J is some index set).

Proof. Let x € (J;c; U; then x € Uy, for jo € J. As Uj, is open we can find r > 0
such that |z —r, 2 +7[C Uj,. But Uj, € U, Ujso o —rz+r[CU. O
Finite intersections of open sets are open:

Theorem 1.25. If Uy,Us,, ..., U, C R are open sets then their intersection Uy N
U,nN---NU, 1s open.

Proof. Let x e UyN---NU,. For k=1,...,n the set Uy is open so we can find 7y
such that |z — rg, @ 4+ rx[C Ux. Put r = min{ry,...,r,}. For k = 1,...,n we then
have |z —r,z + r[Clx — ry, x + rx[C Ug. But then |z —rz+r[CUN---NU,. O

Definition 1.26. Let A C R be an arbitrary subset. A subset U C A is called open
relative to A if there exist an open set U’ C R such that U = ANU’.

Lemma 1.27. The following is equivalent for a subset U C A:
1. U 1is open relative to A.
2. For all x € U have an r > 0 such that AN|x —r,x+r[C U.

Proof. 1 = 2: If U C A is open relative to A then we have an open set U’ C R such
that U = ANU'. If x € U then we can find r > 0 such that |x — r,x 4+ r[C U’, but
then ANjx —r,z+r[CSNU =U".

2 = 1: For each z € U we choose 1, > 0 such that AN]z —r,,x 4+ r,[C U. We now
put U = U, eyl — 72,2 +75[. Then U’ is open and U € ANU’. On the other hand
ANU =, (AN —rypyz +1,]) CU. Hence U = ANU". O

zelU’

Theorem 1.28. Let A C R be an arbitrary subset. We have the following properties
of relative open sets:

1. If (Uj)jes is an arbitrary collection of relative open sets in A then their union
U,es Uj is relative open.

2. If Uy, Us, ..., U, C A are relative open sets in A then Uy NU;N---NU, 1is
relative open.
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CHAPTER 1. THE REAL NUMBERS 1.4. OPEN AND CLOSED SETS

Proof. Suppose (U;);ec; are relative open sets. For each j € J we can find an open
set U; C R such that U; = ANUj. If we put U' = (J,; Uj then U’ is open and
ANU' =U;e,(ANU}) = U,e, Uj so Uje s Uj is relative open.

Now suppose Uy, ..., U, C A are relative open sets. for each k = 1,...,n we can
find an open set U;, C R such that U, = ANU}. If we put U' = U] N---NU), then
U’ is open and

ANU =AnUN---NU, =ANU)N---N(ANU)=U;Nn---NU,. O

Definition 1.29. Let A C R be arbitrary. A set F' C A is called closed relative to
A if the complement A\ F is relative open (if A =R then we call F closed).

A closed interval [a,b] is closed (the complement | — oo, a]U]b, o] is open), R
is closed (the complement () is open), and () is closed (the complement R is open).
Theorem 1.28 implies

Theorem 1.30. Let A C R be arbitrary. We have the following properties of relative
closed sets.

1. If (F})jes is an arbitrary collection of relative closed subsets of A then their
intersection (;c; Fy is relative closed.

2. If F1, Fs, ..., F, are relative closed subsets of A then their union FyUF,U---U
F,, is relative closed.

We can test if a set set is closed using convergent sequences:
Theorem 1.31. The following is equivalent for a set F C A C R:
1. F is closed relative to A.

2. If (Tp)nen 1S a convergent sequence in F' and lim,,_, o x, € A then lim, o x, €
F.

Proof. Assume F is closed relative to A and let (z,),en be a convergent sequence in
F. Assume z = lim,,_,,, x, € A\ F. Because A\ F' is open relative to A we can find
r > 0 such that B(x,r)NAC A\ F, ie., FN B(z,r) = 0. We can choose ny € N
such that n > ng = |z, — x| < r, but then x,, € B(z,r) N F, a contradiction.
Conversely, assume that 2. holds we need to show that A\ F' is open relative to
A. Assume the opposite. Then we can find z € A\ F such that we for all r > 0
have that B(z,7)NAZ A\ F, i.e., that B(x,r)NF # (). For n € N we now choose
z, € B(z,2)NF. We have |z, — 2| < £ so z, - x € A for n — oo. But then
x € F', a contradiction. O
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CHAPTER 1. THE REAL NUMBERS 1.5. EXERCISES

1.5 Exercises

Exercise 1.1. Is the sequence (#)nG convergent? If that is the case what is the

N
limit?
Exercise 1.2. Is the sequence <”i§"> convergent? If that is the case what is
neN
the limit?
Exercise 1.3. Is the sequence <”ZJ§”> convergent? If that is the case what is
neN

the limit?

Exercise 1.4. Let (x,),en be a sequence in R and assume that z,, # 0 for all n € N.
Show:

oIfxn—>0forn%oothenxi—>ooforn—>oo.

oIfxn—>ooforn—>oothenxi—>0forn—>oo.

Exercise 1.5. Consider the sequence ((—1)")nen. Can you find a convergent sub-
sequence?

Exercise 1.6. Consider the sequence (g_:)neN in Q from Example 1.7 and let x € R.
Show that there is a subsequence (Z:—:) ken such that Z:_: — x for k — oco. Hint: Use
that any rational number appears infinitely many times in the sequence and that x
can be approximated arbitrarily well by a rational number.

Exercise 1.7. Let A = {z € Q | z* < 2}. Show that A is bounded from both above
and below. Find inf A and sup A. Does A have a maximum and/or a minimum?

Exercise 1.8. Show that an open interval is open.

Exercise 1.9. Show that the set {1 | n € N} is relative closed to ]0,1]. But not
closed in R.

date/time: January 15, 2024/20:45 16 of 112



Chapter 2

Functions of one real variable

Before we move onto (vector) function of several variables we will make the concepts
of continuity and differentiability precise for functions of one variable. We will also
prove some important theorems about continuous functions. In particular that image
of a closed interval is a closed interval.

2.1 Continuity

Definition 2.1. Let I C R be an interval. A function f : I — R is called continuous
at a point xo € I if we for all positive numbers e can find a positive number ¢ such
that if z € I and |z — x¢| < ¢ then |f(z) — f(xo)] < e. With logical symbols this
can be written

Ve>030 >0V el:|x—x| <d = |f(z)— f(zo)| <e. (2.1)

See Figure 2.1

>
I I =

1076 Zo LEO+(5

Figure 2.1: Continuity: Given an e-interval around f(x) there exits a d-interval
around xy that maps into the given interval around f(xo).

Remark 2.2. The continuity condition is often written as
f(z) = f(z) for x — xy. (2.2)

This notation is due to the fact that we can formulate continuity in terms of
convergent sequences
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.1. CONTINUITY

Theorem 2.3. Let I C R be an interval. A function f : I — R is continuous in
xg € I if an only if we for all sequences (x,)nen in I have that x,, — xo for n — oo
implies that f(x,) — f(xo) for n — occ.

Proof. Suppose f is continuous in xy and that x,, — zy for n — oco. Given € > 0. As
f is continuous in xy we can find 0 > 0 such that |z — x| < d = |f(z) — f(z0)| < €.
As x, — o for n — oo we can find ng such that n > ng = |z,, — 29| <, but then
we have |f(x,) — f(zo)| <, ie., f(x,) = f(zo) for n — oo.

Now suppose f is not continuous in zy. Then we can find an € > 0 such that we
for all 6 > 0 have some x € I with |z — 2| < ¢ and f(x) — f(x¢)| > €. Hence, for
any n € N we can find z,, € I such that |z, — zo| < 2 and |f(z,) — f(z0)| > €. We
now have x,, — xo for n — oo, but f(z,) 4 f(zo) for n — oo. O

Ezample 2.1. The function f: R — R given by f(x) = z is continuous at all points
z € R: For any 2y € R we have |f(z) — f(zo)| = |z — zo|. So if we have an € > 0
and 0 < 6 < e then |z —zo| <0 = |f(x) — f(xo)] <e.

Ezxample 2.2. Let ¢ € R then the function f : R — R given by f(x) = ¢ is continuous
at all points z € R: For any 2y € R we have |f(z) — f(zo)| = 0. So if we have an
e>0and 0 <§ then |z —zo| <0 = |f(x) — f(xg)] <e.

Ezxample 2.3. Let a,b € R then the function f : R — R given by f(z) = az + b is
continuous at all points x € R. Indeed, for any zo € R we have |f(x) — f(:po)| =
lax + b — (axg + b)| = |a||x — xo|. So if we have an € > 0 and 0 < 0 < then

|z —zo| <= |f(x) — (x0)|<1+‘|e<e

1+| |

Example 2.4. The function f : R — R given by f(z) = 22 is continuous at all points
x € R. Indeed, for any xg € R we have

[f(@) = f(zo)l = [a® — x| = |z + @ol|w — o] < (2] + [wo]) ] — o] -

So if we have an € > 0 and 0 < ¢ < min{{7—, 1} then [z < |zo| + 1 and hence

|z — x| < = |f(x) — flzo)| < ﬂ’;"xo"s < e. Observe that § depends on xy. The

larger the z; is, the smaller § needs to be.

We will use the next example later so we formulate it as a lemma.

Lemma 2.4. The function inv : R\ {0} = R given by inv(z) = 1 is continuous at

all points x € R\ {0}.

2

Proof. If zyp € R and € > 0 then we put = min {@, |zg|

e}. If |x — 20| < § then

2| > %|xo| and we have

1 1

X o

zo—x| |r—wxo| |v—ax0|  3lwole

T

[2llzol - lwol* 5lwol?
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.1. CONTINUITY

Notice that the positive number ¢ is not unique. On the contrary, if one § works
then any smaller positive number also works.

We do not want to go through arguments as above for any conceivable function
and the following theorem helps us to avoid that.

Theorem 2.5. Ifxo €l and f: I — R and g : I — R are continuous in xq then
1. The function f+g: 1 —R:z— f(x)+ g(x) is continuous in x.
2. The function fg: I — R:xw— f(x)g(z) is continuous in x.

Ifxgel, f:1—R, f(x) #0 forall x € I, and f is continuous in xq then

3. The function % =Rz ﬁ 1S continuous in .

If I,J C R are intervals, f : I — R is continuous in vq € I, f(I) C J, and
g :J — R is continuous in yo = f(xo) then

4. The function go f : I — R:xw g(f(x)) is continuous is xy.

Statement 1, 2, and 3 are a special cases of Theorem 3.9 and Statement 4 is a
special case of Theorem 3.8 so we do not need to give the proofs here. But using
the formulation in terms of sequences it is not hard:

Proof. 1If f and g are continuous in xg and z,, — xo for n — oo then by Theorem 2.3
f(zn) = f(xo) and g(z,) — g(x) for n — 0o and by Theorem 1.9 f(z,) + g(z,) —
f(z0) + g(zo) but then Theorem 2.3 shows that f + ¢ is continuous in xo. This
proves Case 1. The other cases are similar. O

Using induction it is not hard to show

Theorem 2.6. If xqg € I and the functions fr, : I - R, k=1,2,...,n are continu-
ous in xq then

1. The function fi + fo+- -+ fo: I = R:x = fi(z)+ folz) + -+ f@) is
continuous in xy.

2. The function fifo---fo: I = R:x— fi(x)fo(x) - fu(z) is continuous in
Xo-

The examples we have seen so far have all been continuous at all points in the
domain. In that case we call the function continuous:

Definition 2.7. Let I C R be an interval. A function f : I — R is called continuous
if it is continuous at all points z € R. With logical symbols this can be written

VeelIVe>030 >0Vyel:|lz—yl<d = |f(x)— fy)] <e. (2.3)
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.1. CONTINUITY

Ezample 2.5. Any polynomial p: R — R, p(z) = ap+ a1z +- - -+ a,z" is continuous.
Indeed, we know the functions f : x — x and g : © — a; are continuous so the second
statement in Theorem 2.6 tells us that the functions x — a;z* are continuous for all

k=0,1,...,n. The first statement in the theorem now tells us that p is continuous.
Example 2.6. Let f : R — R be given by
x, xe€@Q,
flx) =
0, zeR\Q.

Then f is continuous in 0 only.

We will without proof use that the trigonometric functions cos, sin, tan, cot,
their inverses arccos, arcsin, arctan, arccot, the exponential function exp, and the
natural logarithm log are continuous functions.

If a > 0 then a® = exp(log(a)x) so Theorem 2.6 tells us that  — a* is continuous.
Similar log,(z) = }zigz; so log, is continuous. If x > 0 then 2% = exp(alog(x)) so
x — % is continuous.

We can formulate continuity in terms of open or closed sets

Theorem 2.8. [et A C R be arbitrary and let f : A — R. The following is equivalent
1. The function f is continuous.
2. For all open sets U C R the preimage f~1(U) is relative open in A.
3. For all closed sets F C R the preimage f~1(F) is relative closed in A.

Proof. 1 = 2: Suppose f is continuous, U C R is open, and x¢ € f~1(U). As U is
open we can choose r > 0 such that |f(z¢) — 7, f(zo) + 7[C U. As f is continuous
we can choose 6 > 0 such that |z — x| < § = |f(x) — f(zo)| < r. We now have
f(AN]zo — 6,20+ 8]) C|f(x0) — 1, f(xo) +7[C U. Hence ANjzy— 6, z0+d[C f7H(U).
By Theorem 1.27 f~1(U) is relative open.

2 = 1: Suppose zy € A and € > 0. The interval | f(zo) — €, f(zo) + €] is open so
by assumption f~1(]f(xo) — €, f(xo) +€[) is relative open in A. By Theorem 1.27 we
can find § > 0 such that ANjxg — 6,20 + 6[C f1(]f(z0) — €, f(x0) + €]). But then
flAN|xzg — &, 20 + 0[) C]f(z0) — €, f(xg) + €], i.e., we have found a § > 0 such that
we for x € A have that |v — 2| <0 = |f(x) — f(x)| < €. As € was arbitrary f is
continuous in xg and as zy was arbitrary f is continuous.

2 = 3: Suppose f satisfies 2 and that F' C R is closed. Then R\ F is open
A\ f7YF) = f7YR\ F) is relative open, i.e., f~1(F) is relative closed.

3 = 2: If f satisfies 3 and U C R is open then R\ U is closed and hence f~1(R\U)
is relative closed. Now f~1(U) = A\ f~(R\ U) is relative open. O

The following theorem is very important for mathematical analysis.

Theorem 2.9. Let I be an wnterval and let f : I — R be continuous. Then the
following holds:
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.1. CONTINUITY

1. The image f(I) is an interval. We also call sets on the following form for
intervals: | — 0o, 00[, | — 00, b], and ]a, oo, where a,b € R.

2. If I is closed, i.e., I = |a,b], where a,b € R, then f(I) is closed, i.e., f(I) =
[c,d], where c,d € R.

Proof. Part 1: Let I be an interval and let f : I — R be a continuous function.
We want to show that f(I) is an interval (allowing +oco as endpoints). We do it
indirectly, i.e., we assume the opposite and arrive at a contradiction.

So assume f(I) is not an interval. Then there exists ¢ € R and a,b € I such
that f(a) <c < f(b) and ¢ ¢ f(I).

First assume that a < b. As f(a) < ¢, f(b) > ¢, and f is continuous there exists
01,02 > 0 such that

f(a,a+01]) €] —oo,c[) and f(]b— d2,b]) Cle, o0]) - (2.4)

Put U =la, b|Nf~(] — o0, c[) and V =]a, b|Nf~(]c,00[). They are open sets and
(2.4) shows that ]Ja,a + §;[C U and |b — d2,b[C V. Furthermore, |a,b[= U UV, and
unv =40.

Put d =supU, then a < d < b. The set U is open so if d € U then we can find
€ > 0 such that |d —e,d+¢€[C U, but that contradicts that d = sup U. Hence d ¢ U.
The set V' is open so if d € V then we can find € > 0 such that |d —e,d + €¢[C V,
but as |d — e,d] N U # () that contradicts that U NV = (). Hence d ¢ V.

We see that we must have d ¢ UUV =la, b], but that contradicts that a < d < b.
That means the existence of ¢ is impossible. Hence f(I) has to be an interval and
we have proved the first statement in Theorem 2.9 in the case a < b.

If b > a we can look at —f and then we see that —f(b) < —f(a) and the first
case shows that — f(7I) is an interval, but then f(I) is an interval too.

Part 2: Let I = [a,b] and let f : I — R be a continuous function. We know
f(I) is an interval and we want to show that it is a closed interval.

We first show that f(/) is bounded. Assume the opposite. Then we can find
z, € la,b] such that |f(x,)| — oo for n — oo. By Theorem 1.13 we have a
convergent subsequence z,, — x for k — co. As z,, € [a,b] Lemma 1.7 shows that
x € [a,b], but now we have f(z,, ) — f(x) and also |f(z,, )| — oo, a contradiction.

We now know we have ¢,d € R such that J¢,d[C f(I) C [c,d]. We can find a
sequence (T, )nen 18 [a, b] such that f(x,) — d.

The sequence (z,)nen is bounded so by Corollary 1.13 it has a convergent sub-
sequence (T, Jgken. Let x = limg_o0 ©,,. We have x € [a,b] and as f is continuous
f(z) = limgy0o f(zn,) = d, Le., d € f(I). In exactly the same manner we can show
that ¢ =€ f(I). Hence f(I) = [c,d]. O

As an €asy consequence we have

Corollary 2.10. Let a,b € R and let f : [a,b] — R be continuous. Then f attains
its maximum and minimum, i.e., there exist x1,x9 € [a,b] such that f(z1) < f(z) <

f(x2) for all z € [a,b).
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.2. DIFFERENTIABILITY

Proof. By Theorem 2.9 we have that f(I) = [c,d] for some ¢,d € R, but then
¢ = minges f(z) and d = max,er f(z). So there exist z1,29 € [a,b] such that
f(z1) = cand f(zs) =d. O

In Example 2.4 we saw that given an ¢ > 0 we may not been able to find a
0 > 0 that works for all x € I. If that is possible we call the function uniformly
continuous. The precise definition is

Definition 2.11. Let I C R be an interval. A function f : I — R is called uniformly
continuous if we for all positive numbers € can find a positive number § such that
if x,y € I and |x —y| < § then |f(z) — f(y)| < e. With logical symbols this can be
written

Ve>030 >0Ve,yel:|lz—yl<d = |f(x)— fy)] <e. (2.5)

Ezxample 2.7. In example 2.3, where f(x) = az + b, we saw that if ¢ > 0 and

0 <4 < 77 then |z —y| <0 =|f(x) — f(x)] <e. So fis uniformly continuous.

Example 2.8. The function f; R — R given by f(z) = x? is not uniformly continuous.
Indeed, let ¢ = 1 and let 6 > 0. If x > 1/§ and y = x + §/2 then |z — y| < J, but
|f(x) — fy)| = 200 + 62| > 1+ 6% > e.

The following theorem says that a continuous function on a bounded closed
interval is uniformly continuous. It is essential for the definition of the Riemann
integral, see Section 2.3.

Theorem 2.12. If f : [a,b] — R is continuous then f is uniformly continuous.

Proof. Suppose the opposite, i.e., that f is not uniformly continuous. Then there
exists an € > 0 and for each n € N can we find x,,, y,, € [a, b] such that |z, —y,| < 1/n
but |f(z,) — f(yn)| > €. By Theorem 1.13 we can find a a convergent subsequence
(@, Jken, let kg = limy_ o0 @y, aS |2y, — 20, | < é we also have y,,, — zo for k — oo.
As f is continuous we can find 6 > 0 such that |z —z¢| < J = |f(z) — f(z0)| < €/2.
We can now find k; € N such that k > ky = |29 — 2, | < 0 and ky € N such that
k> ko = |xo — yn,| < 0. If we put ky = max{ky, ka} then

k>ky = |xo— x|, |20 — Yn,| <9 =
|f(zo) = flzn )]s | f(20) = flyny)| <€/2 =
|f(@n) = FYn )l < 1 f(@n,) = f(@o)| + [f(z0) = fyn,)] < €/2+€/2 =k,

a contradiction. O

2.2 Differentiability

Definition 2.13. Let I C R be an open interval. A function f : I — R is called
differentiable at a point x € I if there exists a number ¢ € R such that

flz+h) - f(x)

Y —c forh—0. (2.6)
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.2. DIFFERENTIABILITY

With logical symbols this can be written

h) —
JeVe > 035> OVh £0: |h] <6 — f("””; @ _ e, @

The number ¢ is called the derivative at xg.

Remark 2.14. The condition (2.6) can be rewritten as

fz+h) = flz) —ch

. —0 forh—0. (2.8)
Remark 2.15. If we put
(h) = f(rv+h)—hf(x)—ch7 (2.9)
then €(h) — 0 for h — 0 and we have
f(x+h)= f(x)+ch+eh)h. (2.10)

That is, we can approximate f around xg by a first degree polynomial and the error,
e(h)|hl|, goes to zero faster than h.

Remark 2.16. The condition (2.6) has a geometrical interpretation: The line through
x, f(xo) and (zo+h, f(xg+h)) (a secant) has a well defined limit position as h — 0
(

(the tangent to the graph). The slope of the secant is w and the slope of

the tangent is the limit ¢, see Figure 2.2.

A

(o + h, f(xo + h)

7 (20, f(20)

Figure 2.2: The limit position of the secant (red) as h — 0 is the tangent (yellow).

o
|l

Before we look at some examples we note that differentiable functions are con-
tinuous:

Theorem 2.17. If I is an open interval and f : I — R is differentiable at xq € I
then f 1s continuous at xg.
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Proof. Let ¢ be the derivative of f at xy and consider x € R if we let h = x — xg
then we have |x — zo| = |h| and

f(x+h)—f($)_>0,c:0_ O

h h—0

f@) = f(wo) = f(x+h) — f(x) =h

FExample 2.9. The function f : R — R : x — x is differentiable at all x € R with
derivative 1. Indeed

flx+h)—f(z) z+h-x _2_1

h N h h
Example 2.10. Let ¢ € R. The function f : R — R : z + ¢ is differentiable at all
x € R with derivative 0. Indeed

flx+h)—f(x) c—c 0
h h h

Example 2.11. The function f : R — R : x +— 2?2 is differentiable at all points with
derivative 2x. Indeed
flx+h)—flz) (z+h)?>—2®> 2zh+h’

Y Y . :2x+hh—_>0>2x.

As in the previous chapter the next example is formulated as a lemma.

Lemma 2.18. The function inv : R\ {0} — R : @ — < is differentiable at all points
with derwative ;—21

Proof. Let x # 0 and assume h # 0 and x 4+ h # 0. Then

L —1_=h | —w@t ) R+ | R —0
. = h(l‘—i—h)l’Q o (x—|—h)gc2 )
for h = 0. -

Theorem 2.19. If xg € [ and f : I — R and g : I — R are differentiable at x
with derivatives a and b, respectively. Then

1. The function f+¢g : 1 — R :xw— f(z)+ g(z) is differentiable in xo with
derwative a + b.

2. The function fg: I — R :xw— f(x)g(x) is differentiable at xoy with derivative
f(zo)a + bg(zo).

Ifxg eI, f: 1 =R, f(x) #0 for all z € I, and f is differentiable at xo with

derivative ¢ then

3. The function % I —>R:z— ﬁ 1s differentiable at xo with derivative —f(;g)Q.
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If I,J C R are open intervals, f : I — R s differentiable at xq € I with derivative
a, f(I) C J, and g : J — R is differentiable in yo = f(xo) with derivative b then

4. The function gof : I — R : x> g(f(z)) is differentiable at xo with derivative
ab.

Statement 1, 2, and 3 are a special cases of Theorem 3.29 and statement 4 is a
special case of Theorem 3.28 so we will not give the proofs here. But it is a good
exercise to prove it now.

Using induction it is not hard to show

Theorem 2.20. If xy € I and the functions f, : [ — R, k = 1,2,....n are
differentiable xo with deriwative ¢ then

1. The function fr + fo+ -+ fu: I = Rz fi(x)+ folx) + -+ fx) is
differentiable at x¢ with derivative ¢y + - -+ 4 ¢,.

2. The function fifo--fo: I = R:x— fi(z)fo(x) - fu(x) is differentiable at

To with derivative

c1f2(xo) f3(wo) - . . fu(xo) + fi(xo)eaf3(zo) - . ful@o)+
wo ot fizo) o fasa(@o)en -

Definition 2.21. Let I C R be an open interval. A function f : I — R is called
differentiable if it is differentiable at all points # € I. The derivative at = is denoted
f(x), %(m), or fM(z), and the function f' : R — R : z — f'(x) is called the
derivative of f. If f' is continuous then f is called a C! function.

We can define higher order derivatives recursively:

Definition 2.22. Let I C R be an open interval, let & € Z, and k& > 2. The
function is called k times differentiable if it is differentiable and f’ is k — 1 times
differentiable. The kth derivative is f*) = (f/)*=Y_ If f*) is continuous then f is
called a C* function. If f is k times differentiable for all k& then f is called a O
function.

Remark 2.23. For lower order derivatives we also use the notation f” = f), " =
@) ete.

Example 2.12. The function f(x) = ™ is differentiable with derivative nz"~!. This
follows from the second statement in Theorem 2.20. It can also be shown by induc-
tion on n: The case n = 1 is Example 2.9 and if f(x) = 2" is differentiable with
derivative nz"! and g(x) = z then 2" = f(x)g(z) = (fg)(x) and the second
statement in Theorem 2.19 now tell us that fg : z — 2™ is differentiable with
derivative

(f9)'(z) = f'(2)g(z) + f(2)g'(x) = na" "o + 2" - 1= (n+ 1)a".

A similar argument shows that z +— 2™ is a C*° function.
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Ezxample 2.13. Any polynomial p : R — R, p(z) = ap + a1z + - -+ + a,2™ is differ-
entiable with derivative p/(x) = a; + 2asx + - + na,x" . This follows from the
previous example and the first statement in Theorem 2.20. Again induction on the
degree of the polynomial shows that a polynomial is a C'*° function.

Definition 2.24. We say that a function f : I — R has a local mazximum at xq € 1
if there exist a r > 0 such that f(x) < f(xo for all z € I N [xg — 1,29 + 1]

We say that f has a local minimum at xy € I if there exist a r > 0 such that
f(z) < f(xo for all x € I N [xg — r, 20 + 7).

Lemma 2.25. Suppose f : I — R 1is differentiable in xqg € I and has a local
mazximum or minimum in xo then f'(xqg) = 0.

Proof. For h # 0 we put

e(h) = f(zo +h) — flzo) = ['(w0) _
h
If f'(zo) > 0 then we can find § > 0 such that |h| < § = |e(h)| < f'(zo). For |h| <6

we now have f’(zo) + €(h) > 0 and that implies that

f(zo) + (f'(x0) +€(h))h > f(xg), 0<h <,

flror = {f(xo) + (@) +e(W)h < flz), —d<h<0.

So f(xg) is neither a local minimum nor a local maximum. If f'(z¢) < 0 then
—f"(x9) > 0 so —f(xg) is neither a local minimum nor a local maximum for —f,
but then the same is true for f. Hence we must have f'(zq) = 0. O

Ezample 2.14. The opposite is not true: The function f : R — R given by f(z) = 23

has the derivative f'(x) = 3z% so f/(0) = 0. But if z < 0 then f(z) < 0 = f(0)
and if x > 0 then f(z) > 0 = f(0) so f(0) is neither a local minimum nor a local
maximum.

Lemma 2.26 (Rolle’s theorem). If f : [a,b] — R is continuous, f is differentiable
on the open interval la,b], and f(a) = f(b) then there exist & €la,b| such that

f'€) =0.

Proof. By Corollary 2.10 f attains it minimum and maximum. If the minimum or
maximum is attained in the open interval |a, b| then Lemma 2.25 yields the result.
Otherwise we have the minimum and the maximum at one of the endpoints a and
b, but as f(a) = f(b) the minimum is the same as the maximum. So f must be
constant and consequently f'(x) = 0 for all 2 €]a, b[. O

We can now show the mean value theorem:

Theorem 2.27 (Mean value theorem). If f : [a,b] — R is continuous and f is
differentiable on the open interval |a, b] then there exist & €]a,b| such that

f(b) = fa) = f(E)(b—a). (2.11)

date/time: January 15, 2024/20:45 26 of 112



CHAPTER 2. FUNCTION OF ONE VARIABLE 2.2. DIFFERENTIABILITY

Proof. Define g : [a,b] — R by

_ fa)b—2)+ (@ —a)f(b)

o) = f(2) s

Then ¢ is continuous, differentiable on |a,b] and with derivative ¢'(z) = f'(z) —
W' Furthermore, g(a) = g(b) = 0. So by Rolle’s theorem we have a £ €|a, b|
such that ¢’(¢) = 0. But then f/(§) = W which is equivalent to (2.11). O

Remark 2.28. We have a geometrical interpretation of the theorem: The graph of f
has a tangent that is parallel to the line between the end points, see Figure 2.3 left.

. ¢ b
Figure 2.3: Left: A differentiable function have a tangent parallel to the line between
the end points. Middle: A smooth curve has a tangent parallel to the line between

the end points. Right: If a curve has a cusp (where f/(£),¢'(£) = (0,0)) there need
not be a tangent parallel to the line between the end points.

We easily obtain the following variant

Theorem 2.29. Let I C R be an open interval, let f : I — R be differentiable and
let ©,x 4+ h € I then there exist & between x and x + h such that

flx+h) = f(x)+ f'(Eh. (2.12)
Proof. If h > 0 we but « = x and b =z + h and if h < 0 we put a = z — h and
b = z. In both cases the result is the same as Theorem 2.27. O

As a corollary we have

Corollary 2.30. Let I C R be an open interval and f: I — R be differentiable. If
f'(x) =0 at all points x € I then f is constant.

Proof. Let xg,z € I and put h = x — zy. Then the Mean value theorem says that
f(@) = f(zo+h) = f(xo) + [ (§)h = f(xo). O

In order to prove Taylor’s theorem with reminder we need a slightly stronger
version of the mean value theorem.

date/time: January 15, 2024/20:45 27 of 112



CHAPTER 2. FUNCTION OF ONE VARIABLE 2.2. DIFFERENTIABILITY

Theorem 2.31 (Cauchy’s mean value theorem). If f, g : [a,b] — R are continuous
and differentiable on the open interval Ja,b| then there exist £ €]a,b| such that

(f(b) = f(a))g'(§) = f()(g(b) — g(a)). (2.13)

If g(a) # g(b) we have
) - f@ )
9(b) —g(a)  ¢'(€)
Proof. 1f g(a) = g(b) then Rolle’s theorem yields &]a, b] such that ¢'(£) = 0 and both
sides of (2.13) is zero.
If g(a) # g(b) then we define h : [a,b] — R by h(z) = f(z) — g(x) E) g(a) We
see that

(2.14)

h(b) — hla) = f(b) — fla) = (9(b) — g(a))* ri— 5 =

As h is continuous and differentiable on the open interval |a, b[ Rolle’s theorem give

us a & €la,b[ such that A'(§) = 0, ie., f (&) = ¢(§) 83 5((2)) Multiplying with

g(b) — g(a) yields (2.13) and multlplymg with ’(E) yields (2.14). O

Remark 2.32. If we let g(z) = x then we obtain the ordinary mean value theorem.

Remark 2.33. If (f'(t),¢'(t)) # (0,0) for all t €]a, b[ we have a geometrical interpre-
tation of the theorem: The curve (f(t),g(t)) has a tangent that is parallel to the
line between the end points (f(a),g(a)) and (f(b), g(b)), see Figure 2.3 middle and
right.

We can generalise (2.10) to higher order derivatives, but first we prove the fol-
lowing Lemma.

Lemma 2.34. Let I C R be an open interval, let f : I — R be an n times
differentiable function and let x,x +h € I. If f*)(2) =0 for k =0,1,...,n then

flx+h)

e 0 forh—0. (2.15)

Proof. The proof is by induction on n. The case n = 1 is the definition of differen-
tiability (when f(x), f'(x) = 0). So assume the theorem holds for an n € N, that f
is n + 1 times differentiable, and that f®(z) = 0 for £ = 0,1,...,n + 1. Then f’
satisfies the conditions in the theorem so

f'(x+h)
hn

By the mean value theorem we have f(x +h) = f'(z 4+ £h) for a § €]0, 1] and hence

f'(x +&h)
(&h)"

—0 forh—0.

flz+h)
hn+1 -

’(a:+£h>‘ <
h™ -

‘—>0 for h = 0. O
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Theorem 2.35 (Taylor’s theorem). Let I C R be an open interval, let f: I — R
be an n times differentiable function and let x,x +h € 1. Then

flz+h)= }:kj (z)h* + e(h)|n|"

= f(x) + f'(x)h + %@)hz +oe f“:;(x) A"+ e(h)h™, (2.16)

where €(h) — 0 for h — 0.

Proof. If we put g(t) = f(z+t) = > 1_o %/™(x)t* then g®¥(0) =0for k=0,...,n
So Lemma 2.34 tells us that

g(x +h)

o —0 forh—0. O

e(h) =
Remark 2.36. The polynomial >~ _, %f(k)(m)hk is called the nth degree Taylor poly-
nomial.

We can also generalise the mean value theorem to higher order derivatives, but
here we need the following lemma.

Lemma 2.37. Let I C R be an open interval, let f : I — R be an n times
differentiable function and let x,x +h € I. If f®)(2) =0 for k =0,1,...,n then
there exists € €]0, 1] such that

[z +&h)

n!

fla+h) = (2.17)

Proof. As f(x) = 0 (2.17) is obvious if h = 0. So assume h # 0. Then (2.17) is

equivalent to ("th) f(n)(qf!ﬁh . If we put g(t) = (t — )" then g(x + h) = h"™ and

g™ (t) =n!l. As f(x) = g(z) = 0 we can rewrite the equation as

fla+h)—fx)  fla+h) [z +Eh)

gz +h)—gl@) glz+h) g™ (@+&h)

We will prove this using induction on n. The case n = 1 is Cauchy’s mean value
theorem (Lemma 2.31). Now assume the theorem is true for an n € N and that
f: I — Risan n times differentiable function with f*(z) = 0for k =0,1,...,n+
1. The function f is differentiable so Cauchy’s mean value theorem yields a & €

10,1[ such that % ﬁzg = ch Eii;;:g ((j)) = 5 /Eigigi}g The functions f’' and ¢’ are n

times dlfferentlable so by the induction hypothesis we can find & €]0, 1] such that
fmot&ah) _ D (a4661h) fath)—f(@) _ fOHD) (z+¢h)
Flaoteah) — g (eteaen) HOUING & = &6 we have G gimoey = T gy and we
are done.

This lemma gives us the following generalisation of Theorem 2.29:
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Theorem 2.38 (Taylor’s theorem with reminder). Let I C R be an open interval,
let f:1— R beaC"™ function and let x,xz + h € I. Then there exist £ €]0,1[ such
that

—

==

S

flx+h)= fE (z)hF + % U (@ 4+ ER)R" (2.18)

B
Il

0

Proof. 1f we put g(t) = f(z+1t) = > p_o 5./ ¥ (2)t* then g®¥)(0) =0 for k =0,...,n
So Lemma 2.37 gives us a & €]0,1] such that g(h) = g™ (¢h)h™. Furthermore,
9 (E) = FO(z +1) - FO(x) = £z +1) and

f
L

1
E!

0

flz+h) Z k'f B (2)h* + g(h) = B (z)hF + %f(”)(x +EnRT. O

b
Il

We saw in Lemma 2.25 that f’(z¢) = 0 was a necessary condition for having a
local maximum or minimum, but in Example 2.14 we also saw that it is not sufficient.
If the second derivative is non zero then we can say more:

Theorem 2.39. Let I C R be an open interval and let xq € I. Suppose f: I — R
is twice differentiable with f'(xq) = 0. If f"(xo) > 0 then f(xq) is a local mazimum
and if f"(x¢) <0 then f(xg) is a local minimum

Proof. By Taylor’s theorem we have
1
f(xo+h) = f(zo) + f'(w0)h + if”(%)hg +e(h)h?

1
= flaw) + (") + ) 12
where €(h) — 0 for h — 0. We can find r > 0 such that || < r = e(h) < 3|f"(z0)|.
As h* > 0 we see that (f”(zo) + €(h)) h* has the same sign as f”(zg) for |h| < r
and now the result follows. O

FExample 2.15. Suppose we want to find local maxima and minima for the polynomial
f(x) = 2 — 3x. The derivative is f'(z) = 32> =3 = 3(2* — 1) = 3(z + 1)(z — 1).
So the potential local minima and maxima are x = +1. The second derivative is
f"(x) =6z so f"(—1) = —6 < 0 and f”(1) =6 > 0 so we have a local maximum for
x = —1 and a local minimum for x = 1, see Figure 2.4.

Example 2.16. Suppose we want to find local maxima and minima for the polynomial
f(x) = 2* — 222 The derivative is f'(z) = 42® — 4z = 4a(2? — 1) = dz(z+1)(z —1).
So the potential local minima and maxima are x = —1,0,1. The second derivative
is f"(x) = 1222 — 4 so f"(£1) = 12 —4 = 8 > 0 so we have a local minimum for
x = £+1. We have f”(0) = —4 so we have a local maximum for z = 0, see Figure 2.4.

FExample 2.17. Suppose we want to find local maxima and minima for the polynomial
f(x) = 2a° — 2% The derivative is f'(z) = 2* —2? = 2%(2® — 1) = dw(z+1)(z — 1).
So the potential local minima and maxima are x = —1,0,1. The second derivative

date/time: January 15, 2024/20:45 30 of 112



CHAPTER 2. FUNCTION OF ONE VARIABLE 2.2. DIFFERENTIABILITY

is f"(z) = 423 — 2x so f’(—1) = —4+2= —2and f’(1) =4 — 2 = 2. So we have

a local maximum for x = —1 and a local minimum for z = 1. The third potential
point is z = 0 but f”(0) = 0 and we cannot say anything. (The third derivative is
f"(0) = —2 and it can be shown that this implies that we neither have a maximum

nor a minimum), see Figure 2.4.

0.5
2 0.1
0
0 0
B -0.5
-0.1
-4 -1
-2 -1 0 1 2 -1 0 1 -1 0 1

Figure 2.4: Left to right: Example 2.15, 2.16, and 2.17.

It is in general not so easy to find the zeros of f’ and more often than not we
have to resort to numerical methods.
The following is a special case of the inverse function theorem.

Theorem 2.40 (Inverse function theorem). Let I C R be an open interval and let
f I — R be differentiable with continuous derivative f'(x) # 0 for all x € R. Then
the image J = f(I) is an open interval, f is invertible, and the inverse f~1: J — I
is differentiable with derivative (f~')'(y) = f’(f+(y))

Proof. As f is continuous J = f(/) is an interval. We need to show that it is open.

As f" is continuous f’(I) is an interval and as 0 ¢ f'(I) we have that f is
either monotonically strictly increasing or monotonically strictly decreasing. So f
is injective and hence invertible.

We can now show that J is open. If y € J we put z = f~!(y) € I. As I is open
we can find x1,z9 € I such that 1 < z < x9 and then we have that y = f(x is
between f(zq) and f(x3). So y cannot be an endpoint, i.e., J is open.

We now consider a y € J. Before we find the derivative of the inverse we need a
little bit of preparation. We put # = f~(y) and choose a, b € I such that a < z < b.
Now f([a,b]) is a closed interval [c,d] C J and ¢ <y < d. If h >0 and y+h € [¢,d]
then we put k = f~Y(y +h) — f~Y(y), i.e., y + h = f(x + k). By the mean value
theorem we have

h=y+h—y=fl+k) - fz) = [©OF

and hence

h h
|k|_’ ‘< |

1) mingepy | /(1)
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We see that h — 0 = k — 0 and hence

ffl(y+h)—f71(y): rthk—w
h flx+k)— f(x)
1 L1 0
T EET@ o fo) )

FExample 2.18. The elementary functions are differentiable with derivatives given in
the following table

f(z) || logx | expx | cosx | sinz

f(x) 1 lexpz | —sinz | cosz

We can define the natural logarithm as log(x) = ff % dt so the derivative is clearly
%. We can then define exp as the inverse of log and then we have that the derivative

is —4— = exp. The derivatives of cosine and sine are derived in Appendix C.

exp &

Given this we can find the derivatives of more functions

Example 2.19. If a > 0 then the following functions are differentiable

f(z) x® a® tanz = 2L cotw = 7
f'(@) | az*™' | log(a)a” | =57 =1+tan’z | - = —(1+ cot’z)
z) || log,(z) | arccosz | arcsinz | arctanz | arccot x
f(x) || log,
/ 1 —1 1 1 —1
f (i[)) zloga V1—22 V1—2z2 142 142

2.3 The Riemann integral

Given a continuous function f : [a,b] — R we want to make sense of the area under
the graph, or rather the area between the z-axis and the graph, where the portion
over the z-axis is counted positive and the area below the z-axis is counted negative,
see Figure 2.5. In order to that we partition the interval [a, b] in n pieces, i.e., we pick
xy € [a,b] for k=0,1,...,n such that a = 2o < x; < --- < x, = b and consider the
closed intervals [zy_1,zy] for K =1,2,...,n. In each interval the function f attains
its minimum ¢, = mingepy, , 4,) f(z) and its maximum di, = max,cp, 0, f(2). We
can now write down a lower sum and an upper sum

n

L((ze)p=o) = > crlwe —xro1) . Ull@n)isg) = Y drlawr — 2x1) | (2.19)

k=1

respectively, see Figure 2.6.

A partition @ = z(; < 2] < --- < 2}, = b is called a refinement of the part-ion
a=mxy <z < - <z, = bif it is obtained by partitioning some (or all) of the
intervals [z, zg], 1.e., if {ap |k =0,...,n} C{a} | k=0,...,n'}. If we refine

a part-ion then the corresponding lower sum becomes bigger and the corresponding
upper sum becomes smaller:
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YA

sV

Figure 2.5: The area over the z-axis is counted positive (pink). The area under the
z-axis is counted negative (light blue).

4 YA

LTp—1 Tp Tn-1 Tn
Ty Ty T2

s
|V

ToT1T2

Figure 2.6: To the left the signed area of an upper sum. To the right of a lower sum.
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Lemma 2.41. If a = z( < 2} < --- < 2}, = b is a refinement of a = xy < 1 <
cr < ap = b then L((zy)io) < L((7})7=0) < U((7})izo) < U((2r)iz)-

Proof. As¢j = mingefy o) f(2) < MaXeeln,_, ) f(7) = dj we clearly have L((z})_,) <
U((wh)iz0)-

If @ <t <ty <t3 <0bthen mingey, 4, f(x) is a lower bound for f on both
[t1,t2])and [to,t3]. Hence

min f(z)(ts —ty) = min  f(z)((ty — t1) + (t5 — t3))

mG[tl,te,] :DE[thtg}

< min f(z)(ta —t;) + min f(z)(ts —t2).

T€[t1,t2] x€[t1,t3]

So L((wx)f—o) < L((2})7_,). Likewise, max,cp, 1, (%) is an upper bound for f on
both [t1, ts]and [ty, t3] and the inequality U((2})r_,) < U((xx)P_,) follows. O

Any lower sum is smaller than any upper sum

Lemma 2.42. I[fa=2y <21 < - <z, =banda=z; <z} < ---<a,, =0bare
two partitions of [a,b] then L((x})7_y) < U((z1)7—y)-

Proof. By sorting the set {zo,z1,..., 2y, 2, 2}, ...,2,,} we obtain a partition a =
ry < xf <--- <z, =b that is a refinement of both of the given partitions. Now
Lemma 2.41 tells us that L((2})7_,) < L((z])72,) < U((2)) < U((wp)p_,). O

So the set of all lower sums are bounded from above (by any upper sum) and set
of all upper sums are bounded from below (by any lower sum). Hence the supremum
of the former and the infimum of the latter exist. It turns out that these two numbers
are equal:

Theorem 2.43. Let

£:{L((xk)2:0)|a§$0<x1<...<xn:b}’
and

U={U((r)=) |a <20 <21 <+ < = b},
be the sets of all lower and upper sums, respectively. Then sup L = infU.

Proof. If L € L and U € U then L < U so we clearly have sup £ < infl{.

Let € > 0 be given. As f is continuous Theorem 2.12 says that f is uniformly
continuous. So there exist § > 0 such that |z —y| < § implies | f(z) — f(y)| < ¢, for
all z,y € [a,b)].

We now choose n € N such that b’Ta < 0 and we put zp = ”T’ka + %b for
=0,1,...,n. This gives a partitiona = xog < z; < -+ < x, = b where vy, —xp_1 =
—¢ < §forall k=1,2,...,n.

o T

*|
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Letting ¢, = minge(y, 2 f(2) and d, = maxgepy, | 2, f(x) we have ¢, = f(sp)
and dy, = f(tx) for some sy, ty € [xp_1,xk].

Then |ty — si| <@ — k-1 < dand d, —cp < eforall k =1,2,...,n. We finally
have

U((wr)k=0) = L((k)r=o) de (w5 — 2x1) = Y cxlwr — 241)
k=1
= (dk — Ck b —a < Eb
k=1 k=1

As L((z)i_y) <sup L <infUd < U((zx)}_,) we have

inf Ul — sup £ < U((a)iy) — L((@e)j_o) < €.

Hence infUd < sup L + € for all € > 0 and that implies infif < sup L < infld, i.e.,
sup £ = infl4. O]

We now define the integral of f over [a,b] as this common value:

Definition 2.44. Let f : [a,b] — R be continuous. The integral of f is

b
/ f(x)dx =sup L = infl ,

where £ and U are the the sets of lower and upper sums, respectively.
If we examine the proof of Theorem 2.43 we see that we have

Lemma 2.45. Let f : [a,b] — R be continuous and let € > 0 be given. If § > 0,
e —y| <d=|f(x)— fly) <€ anda=xy <1 < - - <z =D is a partition of
la,b] such that x), — x_1 < §, then

b
0 < U((zg)pp) —/ flx)dr <€,

os/ﬂmm—umm@<e

So in principle we can approximate the integral f; f(x)dx by a lower or upper
sum of a sufficiently dense partition of [a,b], but then we will have to find the
minimum or maximum of f on all the subintervals [xy_1,x|. That is clearly very
cumbersome. Instead we can just evaluate f in any point & € [zy_1, %] and thereby
obtain what is called a Riemann sum

M () —0s (€k)i=1) Zf &) (vp — Tp-1) -, (2:20)

see Figure 2.7. In the figure we have used the mid points &, = = but that is
not important.
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Figure 2.7: The signed area of a Riemann sum.

Remark 2.46. Observe that both the lover sum L((zy)?_,) and the upper sum
U((x)}_,) is a Riemann sum and that

L((z1)k=0) < M((7r)f=0, €k)r=1) < U((z)i=0)

for any Riemann sum M ((xx)}_q: (§k)rey)-

Theorem 2.47. Let f : [a,b] — R be continuous and let € > 0 be given. If § > 0,
lz—y| <d=|f(x) — fly) <€ a=x0 <z < - <z, = is a partition of |a,b]
such that xy — xp_1 < § and & € [xg_1,xx|, then

[ 5@ =3 s — )| <.

Proof. As L((xk)i_g) < > py f(&) (@ — zp—1) < U((z)}_,) the result is a conse-
quence of Lemma 2.45. O]

Remark 2.48. The theorem says that the integral is the limit of Riemann sums,
where the largest difference in the partitions (max(z, — xx—1)) goes to zero. That
means that many properties of Riemann sums are valid for integrals

As a Riemann sum is linear in f, so is the integral:

Theorem 2.49. If f,g: [a,b] = R are two continuous functions and \ € R then
b b b
[ @) +gtenas = [ pwas = [ ga)de,
a b a b a
/ )\f(x)dx:)\/ f(z)dz.

Proof. Left as Exercise 2.8. O]

For a Riemann sum we have |> 7, f(&)(xr — zp—1)| < D py [F(E) @k — z1) -
Similar for an integral:
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Theorem 2.50. If f : [a,b] — R is continuous then

A%@Mx

Proof. Left as Exercise 2.9. n

< [Irwiar

We can split an integral in two (or more) integrals:

Theorem 2.51. Let f : [a,c] — R be continuous and let b € [a, | then

/acf(:t)dx:Lbf($)dx+/bcf(x)dx.

Proof. Let a = xy < 1 < -+ < x, = ¢ be a partition of [a,c|]. Either we have
b = x,, for some m or we have a m such that z,,_; < b < z,,. In the first case
we put ), = z; all & = 0,1,...,n and in the second case we put z) = x; for

k=0,1,...,m—1,2, =b,and z}, = 23 for k =m+1,1,...,n+ 1. In both cases
we have a refinement a = 2 < 2} <--- < 2!, = ¢ where b = z,,.
We now have

b
() < / F(2)dr < U((@y)7y)
L)) < / o) de < U(())
and hence

L((z1)7—o) < L{(})i o) = L((z},)10) + L{(})i_,)
b c
glﬂ@m+lﬂ@m
< U((@})imo) + U((@h)il) = U(@h)ise) < U((zr)—o)

As the partition was arbitrary this implies that

/acf(x)dx:supﬁg/abf(x)der/bcf(x)dxSinfu:/acf(x)dm' O

The integral of a positive function is positive.

Theorem 2.52. If f : [a,b] — R is continuous and f(x) > 0 for all z € [a,0]
then f;f(x) dzx > 0. Furthermore, fabf(x) dz = 0 if and only if f(x) = 0 for all
x € [a,b].
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Proof. If f(x) > 0 for all z € [a, b] then all Riemann sums > ;_, f(&)(zx—z5—1) >0
and as fab f(z)dx is the limit of Riemann sums it is non negative too.

Suppose f(xg) # 0 for a point zg € [a, ], then f(z) > 0. As f is continuous we
can find § > 0 such that |z — xo| < § = |f(z) — f(zo)] < @ Then |z — zo] <
b= f(z) > @ Hence we can can find a < ¢ < d < b such that f(z) > @ for
all w € [c,d]. As f(z) — 122 >0 for all z € [¢, d] we have fcd (f(a:) — @) de >0
and then

/Cdf(x)dx: /Cd <f(:c) = f(§°) + ﬂ;")) dz

:/Cd (f(x)—ﬂ;‘"))) dx+/cd@dx

:/Cd (f(:):)—@) dm+@(d—0)2 f<x0)(d—0)-

We now have

/abf(:c)dx:/:f(a:)der/Cdf(x)dx+/dbf(x)dxZ/cdf(x)dx>0' —

Integration preserves the ordering

Theorem 2.53. If f, g : [a,b] = R are continuous and f(x) > g(zx) for all x € [a,b]
then fabf(:c) de > fab y(z)dx. Furthermore, f:f(:c) do = f:g(:c) dz if and only if
f(z) = g(x) for all x € [a,b).

Proof. Consider the function f — ¢ and use Theorem 2.52. O

Remark 2.54. The lower limit is allowed to be larger than the upper limit. If f :
la,b] — R is continuous then we put [/ f(z)dz = — fabf(m) dz.

We have a mean value theorem for integration:

Theorem 2.55 (Mean value theorem). Let f : [a,b] — R be continuous then there
exist & €la, b[ such that f; flz)dz = f(§)(b—a).

Proof. 1f f is constant the theorem is true for any £ €la, b|.

Otherwise Theorem 2.9 tells us that f([a,b]) = [¢,d] and ¢ < d. Then ¢(b—1) <
ff f(z)dx < d(b—a). So there exist y €]c,d| such that fab f(x)dz = y(b— a).

We can now find x, 25 € [a,b] such that f(x;) = ¢ and f(x2) = d and then we
can find £ between z; and x5 with f(§) = y. As ¢ <y < d we must have £ # z; and

& # x9 50 € €a, b|. O

Remark 2.56. It is easy to see that we can find £ € [a,b] such that fabf(x) dr =
f(&)(b—a). The hard part is to show that we can avoid a and b.
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The integral is a differentiable function of its upper (and lower) limit.

Theorem 2.57. Let f: [a,b] — R be contmuous

The function F : [a,b] — R given by F(t f f(z)dz is differentiable with
derivative F'(t) = f(t).
Proof. F(t + h) — F(t) = f;+h f(x)dz — fat f(z)dz = tt+h f(z)dz. Given € > 0
choose § > 0 such that |t —s| < 0 = |f(t) — f(s)] < e. The mean value theorem

above now give us a¢ € [t,t + h] such that f:% f(z)dz = f(§)h. We now have
PEED — f(1)| = 1£(€) = f()] < € for [B] < 6. O

Remark 2.58. We have
b b ¢ t+h
t+hf(:r;)dx—/t f(z)dz = t+hf(x)dx:—/t f(z)dz.

So & f7 f(x) dz = —f (1)

Definition 2.59. An anti derivative to a function f :]a,b|— R is a function F' :
la,b[— R such that F'(z) = f(z) for all x €]a, b].

Lemma 2.60. If F, G :]a,b|— R are differentiable and F'(x) = G'(x) for allx €]a,b]
then I' — G is constant.

Proof. Let z,y €la,b| with x < y. As H = F — G is differentiable with derivative
H'(z) = F'(x)—G'(z) = 0 the mean value theorem (Theorem 2.27) gives us £ €|z, y|
such that H(y)—H(z) = H'({)(y—z) = H'({)(y—x) = 0. Thatis, H(y) = H(xz). O

Theorem 2.61 (Fundamental theorem of calculus). If f :]a,b[— R is continuous
and o €|a, b[ then all anti derivatives to f is given by

:/x:f(x)d:rntk.

where k € R s an arbitrary constant.

Proof. By Theorem 2.57 such functions F' are indeed anti derivatives and Lemma 2.60
tells that they are the only ones. O]

Conversely we have

Theorem 2.62. If [a,b] Cle, d[ f i [a,b] = R is continuous, F :]c,d[— R is
differentiable and F' = f then f f(z)dz = F(b) — F(a).

Proof. If we for z € [a,b] let G(x) = [ f(2) dz then G(x) = F(z) + k for = €]a, b.
As G(a) = 0 we have [T f(x d:r; = G(x) — G(a) = F(x) — F(a) for all z €]a, b[ and
by continuity we have fab f(x) dz = F(b) — F(a). O
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Theorem 2.63. If [a,b] Clc,d[, g :|c,d[— [a, V] is differentiable, and f : [a’, V'] = R
15 continuous then

b g(b)
/ﬂwmmazﬂ)mmﬂ

Proof. If F is an anti derivative of f then $F(g(t)) = F'(g(t))g'(t) = f(g(t))d (t),
i.e., F'o g is an anti derivative of (f o g)-¢’. Thus

b 9(b)
| Ftoteng = Fio) ~Flgten = | sy, 0

Remark 2.64. Formally we substitute 2 = g(¢) and say dz = $¢dt = ¢/(t) dt.

2.4 Exercises

Exercise 2.1. Prove Theorem 2.5

Exercise 2.2. Prove Theorem 2.6

Exercise 2.3. Prove Theorem 2.19

Exercise 2.4. Prove Theorem 2.20

Exercise 2.5. Find the 2nd degree Taylor polynomial of cosz and sinz at 0.
Exercise 2.6. Find the 2nd degree Taylor polynomial of exp x at 0.
Exercise 2.7. Find the 2nd degree Taylor polynomial of logz at 1 .
Exercise 2.8. Prove Theorem 2.49, i.e., integration is linear in the integrand.

J2 fw)da| < [ 1) de.

Exercise 2.9. Prove Theorem 2.50, i.e.,

Exercise 2.10. The hyperbolic cosine and sine are defined by cosh(z) = <= and

sinh(z) = ©=%—, respectively. Find their derivatives.
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Chapter 3

Functions of several variables

3.1 Introduction

We will use the euclidean norm to measure distance in R", i.e., if ,y € R" and
x = (x1,...,2,) and y = (y1,...,y,) are two points in R” then the distance between
them is

lz =yl = V]er — ol + |22 = 9o + - 4 |20 =yl (3.1)
Let A C R", a vector function A — R™ is of the form
(1, .y xn) = (fi(xy, o), o f(Ty, ),
where fi,..., f, are real functions A — R. We can write it more compact as
x — f(x), where @ = (z1,...,2,) and f = (f1,..., fn)-
FExample 3.1. A quadratic form is a function f : R™ — R of the form
flx)=2"Az + bz +c, (3.2)

where ¢ € R, b € R", A € R™", and we consider elements x € R" as column
vectors. As £ Az is 1 x 1 we have 7 Az = (x7 Az)” = £ ATz and hence

1
flx) = in(A + ANz +b'x +c.
As (A + AT) is symmetric we can always assume that A is symmetric.

FExample 3.2. If A is symmetric all eigenvalues A\, are real and we can find an
orthonormal basis ey, ..., e, for R” consisting of eigenvectors for A. If x = z1e; +
-+ x,e, and b=0bie; + -+ + b,e, then we can write (3.2) as

flx) = a2 4+ 22 + by + -+ byzy, +C.
2
If A\ # 0 then )xk:z:i + b = A& (xk + 2%) — So by sorting the eigenvalues

properly we can write

b2 2 b2 2
1 m

b2 b2
where A,..., A\ # 0, g1y, A =0, andC’:c—ﬁ—---—d’:n.
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3.1.1 Quadratic forms in the plane

We consider a function f : R? — R of the form (3.2). We are interested in the level
sets of f, i.e., the solutions to the equation

f(x) = constant . (3.4)

If A = 0 we simply have a linear equation b”x = constant. So we will assume
A #£0.

As we saw in Example 3.1 we may assume that A is symmetric. Then the eigen-
values are real and we can find an orthonormal basis e;, e, consisting of eigenvectors
of A with eigenvalues A\; and \g, respectively. At least one of the eigenvalues are
non zero and we may assume it is \; (otherwise exchange e; and ey). We may also
assume A\; > 0, otherwise multiply the equation (3.4) by —1 on both sides. There is
a number of different cases:

A1 >0, Ay > 0: Now A is regular and if we put xy = —%A‘lb, then a direct calcu-
lation shows that

flx) = (z—x0)" Az — ) + ¢ — 2] Axy .
We can now write * = @y + re; + yes and then
f(®) = M2 + \y® + ¢ — xf Az .

By subtracting c—x] Az, from both sides of (3.4) we end up with an equation
of the form
Mz? + Agy? = constant . (3.5)

If the constant is negative we have no solutions. If the constant is zero the
solution is a single point * = x(, and if the constant is positive we have an
ellipse, see Figure 3.1 left.

1 1

0 0
-1

-1 -1

0 -1
T Y

Figure 3.1: Left to right: The case A;, Ao > 0, the case A\ > 0, Ay < 0, the case
AL > 0, Ao =0, <b,€2> 7é0
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A1 >0, Ay < 0: The matrix A is still regular and we can repeat the previous argu-
ment. So we still end up with the equation (3.5). But, now we have solutions,
a pair of hyperbolas, for all values of the constant, see Figure 3.1 Riemann.

A1 >0, Ay =0, (es,b) #0: We can write b = ae; + bey where b # 0. We may
assume that b < 0 otherwise replace e; with —e;. By multiplying the equation
(3.4) by |—11)| on both sides we may furthermore assume that b = —1. If we write

xr = (x + 2%) e + yey then we have

CL2

— 2 _ _
flx) =Mz —y+c Ve

By subtracting ¢ — % from both sides of (3.4) we end up with an equation of
the form
\a? — y = constant .

The solutions are parabolas, y = \x> — constant, see Figure 3.1 right.

A1 >0, A =0, (e3,b) =0: Now b = ae; and if we write = <$+ﬁ> e + ye,

then we have f(x) = \jz? + ¢ — % . By subtracting ¢ — ﬁ from both sides
of (3.4) we end up with an equation of the form

A\ 22 = constant .

If the constant is negative there are no solutions. If the constant is zero the
solution is a line given by = = 0 and if the constant is negative the solution is

two parallel lines given by z = 4, /centant,

3.2 Continuity

The definition of continuity for vector functions of several variables is the same as
for functions of one variable

Definition 3.1. Let A C R"™ and xy € A. A vector function f : A — R™ is called
continuous at a point xq if we for all positive numbers € can find a positive number
d such that if € € A and ||z — x| < ¢ then || f(x) — f(=zo)| < e. With logical
symbols this can be written

Ve>030 >0V e A: ||z —xol| <d = ||f(x) — f(zo)|| <e. (3.6)

If f is continuous at all point * € A then f is called continuous. With logical
symbols this can be written

VyeAVe> 030 >0V € A: |z —yl| <6 = ||f(z) - f(y)| <e. (3.7)
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Remark 3.2. The continuity condition is often written as
f(x) = f(=x) for x — xy. (3.8)

Example 3.3. Let A be an m x n matrix. The linear function L : R® — R™ given

a1 a1,n
by L(x) = Ax is continuous in all points &y € R". Indeed, if A = ( : : )

am,1 .-+ OGm,n

then we let ¢ = max{|a|}. If y = Az we have
el = lakazy + - - + appn] < lagallea] + -+ lagnllen] < cnlle],

and hence

Iyl = VI + - + lyml* < Vmlenllz]))* = mne||z| .

Soife>0,0<d < 7=, and | — @o]| < 0 then

|Az — Axy|| = ||A(z — o) || < Vmnc||z — xo]| < vVmned <e.
Ezxample 3.4. A quadratic function (3.2) is continuous. We will later see that a

differentiable function is continuous (Theorem 3.17) and a quadratic function is
differentiable (Example 3.6). So we will not show it now.

The following four lemmas give other examples of continuous functions

Lemma 3.3 (Projection on the kth coordinate). Let k € {1,2,...,n}. The function
Py :R*" - R (21,...,2,) — x is continuous at all points y = (y1,...,yn) € R".

Proof. We have

|Pe(x) — Pe(y)| = [vx — yl = V(2% — yr)?
<V@ =)+ A+ (@ — ) =z —yll.

Ife>0and 0 <6 <ethen || — x| <= |P(x) — Pe(xo)| <e. O

Lemma 3.4 (Diagonal). The vector function diag : R® — R?" : & — (xz,x) is
continuous at all points x € R™.

Proof. Given xy € R and € > 0 we put = se. If & € R” and |l — || < § then

[(z, ) — (20, o) || = |[(z — @0, T — )|

2
:\/||£l:—a30||2—|—”$—w0”2<\/52+52:\/55:§€<6. O

Lemma 3.5. Addition add : R = R" x R" — R" : (z,y) — x + y is continuous
at all points (x,y) € R*".
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Proof. Given (xg,y0) € R* and € > 0 we put § = 1e. If (z,y) € R*" and ||(z,y) —
(o, Yo)|| < 6 then || — x| < d and ||y — yo|| < . Hence

e+ vy — (xo+yo)| = || — 2o + Yy — Yo
<l —xol| + ly —wol <d+0=€. O

Lemma 3.6. Multiplication mult : R? — R : (z,y) — xy is continuous at all points
(z,y) € R%

Proof. Given xy = (zo,y) and € > 0. Put § = min {1, Trom) m} If x=(z,y)
and @y — x| < 0 then |z — x| < J, y — yo < 0, and |x| < 1+ |x|. Hence
2y — zoyo| = |2y — 2y + 2Yo — Toyo| = |2(y — vo) + (x — 20) 0|
< l2(y = yo)| + |(z — zo)yo| < le5+5|yo\
< (1+ Jzo)

(@)

—e. U

ol < = +
\y°—2 2

€
+
2 + 2|ao| 2+2|

Lemma 3.7. Let A C R*, let BC R™, let f: A — RF letg: B — RfIf
[ is continuous at a point £y € A and g is continuous at the point yo € B then
(f,9) : Ax B — Rz, y)— (f(x),g(y)) is continuous at (xg,Yo)-

Proof. Given € > 0. Choose d; > 0 such that || — x| < 61 = || f(x) — f(zo] <
€/2 and choose 2 > 0 such that ||y — yo| < d2 = |lg(y) — g(yo|| < ¢/2. Put

0 = min{d;, dp}. We have [|(z,y)[| = v/[[z[* + ly[|* so if [|(x,y) — (0, 30)ll <

then ||z — x|, [|ly — yol| < 0 and || — xo|| < §; and ||y — yol| < 2. Hence
1/ () = f(zo)|| < €/2 and [[g(y) — g(go)|| < /2. Finally
1(f(x),9(y)) = (f(@0), g(0))[| = [|(f(z) -

a(yo))|l
_ @) = F @) 9] — 9@l < w—+f ¢h<e

Composition of continuous functions are continuous:

Theorem 3.8. Let A CR", let BC R™, let f: A — R™, letg: B — RF, and
assume that f(A) C B. If f is continuous at a point xy € A and g is continuous at
the point yo = f(xo) then g o f is continuous at xy.

Proof. Given ¢ > 0. As g is continuous at yo we can choose d; > 0 such that
ly —yoll < 01 = |lg(y) —g(yo)|| <e. As fis continuous at &y we can choose 6 > 0
such that || — x| < 0 = || f(x) — f(xo)|| < 1. But then ||g(f(xo)) — g(f(x)) =

lg(yo) —g(f (@)l <e 0

Continuity is preserved by the usual arithmetic operations:

Theorem 3.9. Ifxpc Aand f: A— R™ and g : A — R™ are continuous in x
then
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1. f+g: A= R:x— f(x)+ g(x) is continuous in x.
Ifege Aand f: A— R and g: A — R are continuous in xy then
2. fg: A= R:x— f(x)g(x) is continuous in x.

Ifeo e ACR", f: A= R, f(x) #0 forallx € A, and f is continuous in xy then

_1
f(=)

Proof of 1. We can write the vector function f + g as the composition:

3. % A= R:xz— is continuous in xg.

z 8 (z,2) LY (f(2), g(x)) ™S f(a) +g(),

By Lemma 3.4, Lemma 3.7, and Lemma 3.5 these three vector functions are con-
tinuous. By Theorem 3.8 the composition f + g = add o(f, g) o diag is continuous
too. O

Proof of 2. We can write the function fg as the composition:

z 8 (@,2) L4 (f(2), g(x) 5 f(2)g(w),

By Lemma 3.4, Lemma 3.7, and Lemma 3.6 these three vector functions are con-
tinuous. By Theorem 3.8 the composition fg = multo(f,g) o diag is continuous
too. O

Proof of 3. We can write the function 1/f as the composition:

b
fl®)

where the last map is continuous by Lemma 2.4. O]

We can check continuity of a vector function by looking at each coordinate sep-
arately:

Theorem 3.10. A vector function f = (f1,..., fm) : A = R™ is continuous at x
if and only if all the functions fr : A =R, k=1,...,m are continuous at xy.

Proof. We can write the coordinate function f; as the composition f, = P, o f
so if f is continuous at xy then so is fi. Conversely, assume all the coordinate
functions f are continuous at oy and we are given an € > 0. For each functions
fr we can find a 6 > 0 such that ||z — x| < I = |fr(x) — fu(xo)| < €¢/m. We
now put § = min{dy,...,0mn}. If ||@ — x| < 0 then |fi(x) — fi(xo)| < ¢/m for all
k=1,...,m and hence

1£ () = f(zo)| = VIfr(x) — falao)? + - + [ fu() — fru(o)
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3.3 Differentiability

Before we can define differentiability of vector functions f : R™ — R™ we need the
concepts of open sets, (an analogue of open intervals).

Definition 3.11. The open ball in R™ with centre & and radius r is the subset
B(x,r) consisting of points with a distance to @ that is strictly smaller than r, i.e.,

Bz, r)={y e R" [ ly —=| <r}, (3.9)
see Figure 3.2.

Definition 3.12. A subset U C R” is called open if there for every point @ € U
exists an open ball with centre @ contained in U. That is

VeeU3r>0:B(x,r) CU.
Loosely speaking: If we are in U then we can move a little bit in all direction

and stay inside U, see Figure 3.2.

Ezxample 3.5. An open ball is an open set. Indeed, consider x € B(xq,r) put
e =r—|l&—m|. As ||l — x| < r, we have ¢ > 0. We want to show that
B(zx,e) C B(xg,r). Given y € B(x,¢), i.e., ||y — x| < e. Then

ly —oll =y~ = 2 — 20|l < ly — 2] + = — ]

<et|x—zo|| =7 — || —x0|| + || — 20| =7,

and y € B(xo, 7). The closed ball {y € R™ | |ly—x|| < r} is not open, see Figure 3.2,
right. If & is on the boundary then, no matter how small € is, a ball with centre x

Figure 3.2: To the left an open set, in the middle an open ball, and to the right a
closed ball.

and radius e contains outside points.

Now we can define differentiability of vector functions:

Definition 3.13. Let U C R" be an open set. A vector function f : U — R™ is
called differentiable at a point @ € U if there exists a linear map L : R® — R™ such
that
| f(x+h)— f(@) — L(h)|
[k

—0, forh—0. (3.10)
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Compare with (2.8). If B(x,r) C U we can write this as

Ve > 036 €)0,r]Vh £0: A <5 — ITETH) ﬂfﬁf"")—LW” ce

The map L is called the differential of f at & and is denoted df,. From Lemma
10.28 in [1| we know that L is of the form L(h) = Jh where J € R™*™" is a unique
matrix called the Jacobian matriz.

If we put

flx+h)— f(xo) — L(h)
[R] 7

then (3.10) says that €(h) — 0 for h — 0 and we have the following generalisation

of (2.10):

e(h) = (3.11)

f(@+h) = f(x)+ L(h) +e(h)|[h]. (3.12)

In terms of the Jacobian matrix (3.12) becomes
f(x+h)=f(x)+ Jh+e(h)|h], (3.13)

and we see that for small h we can approximate f(x+h) by a first degree polynomial
(in n variables) and the error goes to zero faster than | h||.

Any linear map L : R — R™ can be written as L(t) = tL(1). That leads us to
the following definition

Definition 3.14. Let I C R be an open interval and let f : I — R™ be a vector
function. If f is differentiable in « € I then we define f'(z) € R™ by f'(x) = df.(1).
Then the differential df, : R — R™ can be written as t — tf’(x). If we consider
the elements of R™ as column vectors then the Jacobian matrix is J(z) = f/(x).

Lemma 3.15. If f: [ — R™ s differentiable in x € I then

) g TR = F@)

h—0 h (3:14)

Proof. This is a straight forward calculation. If h # 0 then

fla+h) — f(a) B ‘f(:chh) — (@)= F'@)h
h h

| f(e+h) = @) - )k
i

- 1)

—0 forh—0. O

A linear map is differentiable:

Lemma 3.16. If L : R™ — R™ is linear then it is differentiable at all points x € R"
and the differential is dL, = L.

[L(z+h)—L(z)-L(h)| _
Proof. 1f h # 0 then Tl =0. m
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Example 3.6. Let A € R™" b € R and ¢ € R. A quadratic function f(x) =
x?” Az + bx + c is differentiable at all points £ € R" and the differential is given by
dfz(h) =27 (A + AT)h + bh. Indeed

\f(x+h)— f(z)— (T (A+ AT)h + bh)|

i
(x+h)"A(x +h) +b(x+h)+c—x' Az —bx — c— 2" (A + AT)h + bh|
i
TA TA _ TAT TA T A
WAz W AR~ oT AT |WAR _ [WLJAR]
IRl IRl IRl

for h — 0. Where we at the end used that h” Az is a number and hence h” Az =
(hTAzx)T = 7 ATh, that a linear map is continuous and also Cauchy-Schwartz’s
inequality (|z”y| < ||z||ly]). If A is symmetric the differential simplifies to

df.(h) = 22T Ah + bh.

Just as in the case of functions of one variable, differentiability implies continuity:

Theorem 3.17. Let U C R"™ be an open set, let f : U — R™ be a vector function
that is differentiable at a point € U. Then f is continuous at x.

Proof. Let d f,, be the differential of f at oy and choose C' > 0 such that ||dfz(h)|| <
C| k| for all b € R™. If € > 0 then we can choose 0 < dy such that if ||h|| < dy then

@ +heU and LERI@-CRl + Le Put § = min{dy, 55} If [[b[| < 6 then

[f(x+h) = f(@)|| = [|f(x+h) - fl@) - dfa(h) + dfz(h)]
<[ f(x+h) - fx) - dfa(h)| + [|dfs(h)]]

€ € €
<-+(|h|<z+C—
C+ClR) < S+

—e. O
20 €

Let v € R"™ be a vector and consider the line * + tv. For small ¢ we have
x + tv € U and we can look at the restriction of f to these points.

Theorem 3.18. Let U C R™ be an open set, let f : U — R™ be a vector function
that is differentiable at a point @ € U, and let v € R". Then

1. There exists an r > 0 such that  +tv € U for all t €] — r,r|[.

2. The vector function fy, ;| —r,r[— R™ : t — f(x+tv) is differentiable att = 0
and the derivative is f,(0) = dfz(v).

The derivative of f, is called the directional derivative in the direction v and is
denoted O, f(x). That is Op f(x) = d fz(v).

Proof. If v = 0 then & + tv = o € U for all ¢t so r can be anything. Also f, is
constant and f}(0) = 0 = dfz(0). So assume v # 0. As U is open we can find an

date/time: January 15, 2024/20:45 49 of 112



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES3.3. DIFFERENTIABILITY

open ball B(x,ry) € U if we put r = g then we have it <r=|lz+tv—z| =

|[tv]| = |t]||v]] < r||v]| = ro. This proves 1. We now have
[fo(t) = £o(0) —dfa(@)t]| _ [[f(z+tv) — f() — dfa(tv)]]
! - L ol = ol = 0.
for t — 0. This proves 2. O

In other words, the directional derivative is given by

d
Ouf = = Ff(xo + tv) (3.15)
dt 0
If we let v be one one of the basis vectors e; = (1,0,...,0), ..., e, = (0,...,0,1)
then we obtain the partial derivatives:
Definition 3.19. The kth partial derivative at «x is
of d d
—— =0, f= — t = — ey t,..., T, . 3.16
D2, of = 3 f(@ +tey) » gl @ met Tn) . (3.16)

Definition 3.20. Let U C R” be an open set. A vector function f : U — R™ is
called differentiable if it is differentiable at all points & € U. The differential at a is
denoted df, and is a linear map R™ — R™. The differential df can be considered
as a map U — R™" :  — df, and if it is continuous then f is called a C! vector
function.

If I is an open interval and a function f : I — R is differentiable with zero
derivative f" = 0 then Corollary 2.30 tells us that f is constant. The same is true
in higher dimensions.

Lemma 3.21. If B(xg,r) C R™ is an open ball and a vector function f : B(xg,r) —
R™ s differentiable with zero differential: dfy(v) = 0 for all v € R™ and x €
B(xg,r) then f is constant.

Proof. If © € B(xo,r) and h = & — x; then the vector function g : t — f(xy + th)
has derivative g'(t) = Opf(xo + h) = dfz,+nh = 0. Hence each coordinate function
is constant, so g is constant, and f(x) = g(1) = g(0) = f(x). Hence f is constant
too. [l

We have seen that if a vector function is differentiable then the partial derivatives
exists. The converse is not true, see Example 3.7, 3.8, and 3.9 below. But if the
partial derivatives exists and are continuous we do have differentiability:

Theorem 3.22. Let U C R" be an open set and let f be a vector function U —
R™. If the partial derivatives ngk exist at all points and are continuous then f is
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differentiable and the differential is given by dfzv = Jv where J is the Jacobian

matriz o (;{l() gi( ))

and we consider the partial derivatives %(m) as column wvectors. Furthermore,

considered as a map df : U — R™" . x — df, the differential is continuous , i.e.,
f is a O wvector function.

Proof. Assume the partial derivatives exist and are continuous and let @ € U. We
want to show that f is differentiable in @. First we choose r > 0 such that B(x,r) C
U. For h € R with ||h|| <7 and for k =0,1,...,n we put &) = m+2§:1m—|—hjej,
where e, ..., e, is the standard basis in R” and h = (hy, ..., h,). Then xy = & and
x + h = x,. Using the mean value theorem on the function ¢ — f(x,_1 + thiey)
we have

Fx+h)— f(x)=f(z,) — f(z0)
=) (f(zr) — f(xr)) = g—jk(wk—l + &phier) hy

k=1 k=1

where &, €]0,1[. Then

f(;B-i-h) —Jh = Z(ak$k 1+fkhk€k)—g—fk( ))hk,
and
o) e~ 0y \ﬁm e - o2 @) o
i |0z 3 Ty, R
of

e’Bk 1+ &hier) — —(x)

Oa:k

We need to show that this goes to zero as h goes to zero. Given € > 0 we can
choose 05, €]0,r[ such that h < §, = %(m + h) — %(m))’ < €/n. We now put
0 =min{dy,...,0,}. As ||&xhrer]| = |Ehk| < hi < ||h|| we see that if ||h|| < 0b then

IF(a+h) — f(@)— Th| _ || Of
T <Z 5n

(wk 1+ fkhkek) a—f(w) < €.

axk

So f is differentiable at all x € U and df, = J(x). The entries in J are the partial
derivatives of the coordinate functions of f which are assumed to be continuous so
df is continuous. O]

The following examples show that the existence of all partial derivatives or all
directional derivatives does not guarantee differentiability:
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Figure 3.3: From left to right: Example 3.7, 3.8, and 3.9.

Example 3.7. Let f: R? — R be defined by

2xy

r.oy) = & Ty for (z,y)
f(,y) {() for (z,y) = (0,0),

N
—~
=

@)
~~

If t # 0 then

f(t>0)_f(070):0 and f(0>t)_f(0>0)
t ’ t

=0.

So both partial derivative exists at (x,y) = (0,0) (and g—i(0,0) = g—i(0,0) =0). If
t # 0 then f(t,t) = % = 1. So f is discontinuous at (0,0) and consequently not
differentiable, see Figure 3.3 left.

Example 3.8. Let f : R? — R be defined by

2
flz,y) = $2x—:iy2 for (z,y) # (0,0),

0 for (z,y) = (0,0).

Now f is continuous at (0,0): If (x,y) # (0,0) then we can write (x,y) = (r cosd,rsin6)
(polar coordinates) and then we have

r cos Or? sin® 6
r2cos? 6 + r2sin® 6

|f(x>y) - f(0>0)‘ =

' = |rcos@sin’f| < |r| =0,

for (z,y) — (0,0). We also have a directional derivative in all directions: If (v, w) #
(0,0) and ¢ # 0 then

tvt2w? vw? t

202202 V2 tw?

| f(tv, tw) — £(0,0) — vw?t| _
|t |t]

=0,

50 O,y f = % But the map (v,w) — Opw)f = UZUJFL; is not linear so f is not

differentiable, see the middle picture in Figure 3.3.

date/time: January 15, 2024/20:45 52 of 112



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES3.3. DIFFERENTIABILITY

Ezample 3.9. Let f : R?> — R be defined by
U for (5,0) £ (0.0
——— for
fla,y) = 2t +y° Y Y
0 for (z,y) = (0,0).
Again f is continuous at (0,0): If (z,y) # (0,0) then we can write (x,y) =

(v/vt,wt?), where v > 0 and v? + w?> = 1. Then v,|w| < 1 and if [{| < 1 we
have 22 + y? = vt? + w?t* > v*t? + w*? =2, i.e., [t| < ||(z,y)|]. Furthermore,

Y vy/vtiwt? vy/vwt
et +y?| [ttt [0 +w?
= vvolwllt] < [t = [[(z,y)l| = 0 for (x,y) = (0,0).

3

|f(z,y) = f(0,0)] =

We also have a directional derivative in all directions: If (v,w) # (0,0) and ¢ # 0

B e - f0,0) o :
vt,wt) — f(0,0 vt wt vowt
’ — = = —0 fort—0.
t v+ w3 vH2 4 w? of
S0 Owwyf = 0. We see that the map (v, w) — O, f = 0 is linear, see Figure 3.3
right. If f were differentiable at (0,0) then the differential d f(o) would be the zero

map. But, if h = (¢,t*) and ¢ # 0 then

|f(0+h)— f(0)—O0h| |t3¢2| 1 1

= — =
IR H+tVE+ . 21+ 2 190 2
So f is not differentiable (the limit should be 0).

As the projection P, : R" — R : (z1,...,x,) — xj, the diagonal map diag :
R" — R?" : & + (x,x), and addition add : R" = R" x R" - R": (z,y) — =+ y
all are linear maps Lemma 3.16 immediately give us

Corollary 3.23 (Projection on the kth coordinate). Let k € {1,2,...,n}. The func-
tion Py : R™ = R : (xq,...,2,) — xy is differentiable at all pointsy = (y1,...,Yn) €
R™ and the differential is Py.

Corollary 3.24 (Diagonal). The vector function diag : R" — R*" : & — (x,x)
1s differentiable at all points x € R™ and the differential is diag with matrix (fz) ,
where I, is the n X n identity matriz

Corollary 3.25. Addition add : R?" = R" x R" — R" : (x,y) — = +y is differen-
tiable at all points (x,y) € R*" and the differential is add with matriz (In In) .

We also have

Lemma 3.26. Multiplication mult : R? — R : (x,y) — xy is differentiable at all
points (z,y) € R? and the differential d mult, ) has matriz (v=).
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Proof. The partial derivatives are % =y and % = x. We see they are contin-
uous so by Theorem 3.22 mult is differentiable and the differential has the matrix
(81{;1;& Bgﬂ;lt):(yx)' D

Finally we have

Lemma 3.27. Let U CR", let V C R™ be open sets, let f : U — RF, letg:V —
RE. If f is differentiable at a point € U and g is differentiable at the pointy € V
then (f,g) : U xV — Rt(v w) — (f(v),g(w)) is differentiable at (x,y) with
differential A(f, 9)(@y) = (Afe.dgy). If dfz has the matric A € R™** and dg, has
the matriz B € R™ then d(f, g)(zy) has matriz (4 ).

Proof. 1If we for a pair (h, k) € R™ x R™ have that (x + h,y + k) € U x V then

|G 2) = i)~ (6 5) (&)

[(h, B
_ VIIf(xo+h) — f(zo) — AR|? + |lg(yo + k) — g(yo) — Bk||?
VIRZ+ [k
< I f(zo+h) = fzo) — Ah|| + [lg(yo + k) — g(y0) — BK|

- VIRIZ A+ [[E[[?

I+ )~ Flw) ~ AR|_Jlglu + k)~ aly) - BRI

VIRIZ A+ [[F]f? VIR(Z+ [k ’

for (h,k) — (0,0). O

The composition of differentiable vector functions is differentiable:

Theorem 3.28. IfU C R" and V C R™ are open sets, f : U — R™ andg : V — R*
are vector functions such that f(U) C V, f is differentiable in @ € U and g is
differentiable in y = f(xo). Then go f : U — RF is differentiable in x with
differential d(g o f)z = dgy o d fe.

Proof. For an h € R" with ¢y + h € U we put

flw+h) = f(x) = dfelh)

alh) = 2]

Then ||€;(h)|| = 0 for h — 0 and f(x + h) = f(x) + df.(h) + ||k|l€ (k). Similar,
for a k € R™ with y + k € V we put

g(yo + k) — g(yo) — dgy (k)

)= k] /
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and then |lex(k)|| — 0 for kK — 0 and g(y + k) = g(x) + dg, (k) + ||k|le2(k). If we
let k = df.(h) + ||h|l€i(h) then k — 0 for h — 0 and we have

lg(f(x+h)) —g(f(=)) — dgy(dfz(h))]
R
_ Hg(f(w) +dfz(h) + [|hllei(h)) — g(f(x)) — dgy(dfz(h)) H
IR

_ HHg(f(w)Jrk)—g(f( x)) — dgy(k — ||h[le(h H

it
Hg(f(wo) +k) — g(f(xo)) — dgy(k) n dgy([[hlei(h H

i R
= ||e2(k) + dgy(e1(h))|| = 0 for h - 0. O

Ezample 3.10. Let U C R? and let f : U — R be differentiable. If (x,y) € U and
(x 4+ tv,y + tw) € U for all ¢t € [0, 1] then we have

d 0 0
d—{(a:—l—tv,y—l—tw) = va—i(x+tv,y+tw) +w8—§($+tv,y+tw),
or short % =0

FExample 3.11. Let U C R™ and let f : U — R be differentiable. If & € U and
x+th e U for all t € [0, 1] then we have

df af
dt 8x1

ﬂ—l—wg—;.

of
oz,

—(x+th)=——(x+th)h + -+ (x +th)h,,

where h = (hi,...,h,). Short &L ="  OLp,,

=1 Oz,

Just like continuity, differentiability is preserved by the usual arithmetic opera-
tions:

Theorem 3.29. Ifx € U and f: U — R™ and g : U — R™ are differentiable in x
then

1. f+g: A= R:vw— f(v)+ g(v) is differentiable in x with differential
d(f +g)m = d(f +g)ac = dfw "‘dga:'

IfeeUand f:U — R and g : U — R are differentiable in x then

2. fg: U —=R:v— f(v)g(v) is differentiable in x with differential d(fg)s =
g(x)dfz + f(x)dge.

IfUCR"®, f:U— R, f(v)#0 for allv € A, and f is differentiable in x € U
then

3 L. USR: v

f ﬁ is differentiable in x with differential — f(x)2d f,.
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Proof of 1. We can write the vector function f + g as the composition:
dia, (f.g9) add
v =3 (v,0) =% (f(v),9(v) ¥ f(v) +g(v),

By Corollary 3.24, Lemma 3.27, and corollary 3.25 these three vector functions
are continuous. By Theorem 3.28 the composition f 4+ g = addo(f,g) o diag is
differentiable too and the differential is

d(f + 9)a, = add o(d f, dg.) o diag = df, + dg. . O

Proof of 2. We can write the function fg as the composition:

dia,

v 2% (v, 0) L4 (f(v), g(v) 25 f(v)g(v),

By Corollary 3.24, Lemma 3.27, and Lemma 3.26 these three vector functions are
differentiable. By Theorem 3.8 the composition fg = mult o(f, g) o diag is differen-
tiable too and the differential is

d(f + 9)a, = dmult(f(a) () o(dfz, dga) o diag = g(x)dfz + f(x)dgs - O
Proof of 3. We can write the function 1/f as the composition:

inv 1

f
'v»—>f(v)»—>m,

where the last map is differentiable by Lemma 2.18. By Theorem 3.8 the composition
is differentiable too and the differential is

1 . —d T
d(?)w:dlnvf(m)odfm:ij;Q. m

Just as in the case of functions of one variable we can define higher order differ-
entiability recursively:

Definition 3.30. Let U C R" be an open set. A vector function f: U — R™ is k
times differentiable if f is differentiable and the differential considered as a function
df : U — R™ ™ is k— 1 times differentiable. If the kth derivative is continuous then
f is called a CF function If f is a C* function for all k£ € N then f is called a O
function

In terms of the partial derivatives we have

Theorem 3.31. Let U C R”™ be an open set. A wvector function f : U — R™ is a
C* wector function if and only if all partial derivatives up to order k exists and are
continuous.
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Proof. If f is a C* vector function then is clear that the partial derivatives of order
k exists and are continuous.

We need to show that if all partial derivatives of order k exists and are continuous
then we have a C* function. We prove it by induction on the order k. The case
k = 1is Theorem 3.22. So now assume that the theorem is true for a £ € N and that
f is a function where all partial derivatives of order k£ + 1 exist and are continuous.
As k > 1 Theorem 3.22 shows that f is a C! function, so df : U — R™*" exists
and are continuous. As all partial derivatives of f up to order k£ + 1 exist and are
continuous, all partial derivatives of df up to order k exist and are continuous. So
by the induction hypothesis df is a C* vector function, but that mean by definition
that f is a C**! vector function. O

If fis a C* vector function then the order of differentiation does not matter.
We first consider a function of two variables.

L(Zemma 23.32. If U C R? is a open set and f : U — R is a C* function, then
o°f _ O°f
0xdy ~— Oyox”

Proof. Consider a rectangle [a,b] X [¢,d] C U and the function

gl(ﬁ):f(x,d)—f(x,c), IE[a,b].

We have
91(b) = gi(a) = f(b,d) = f(b,c) — f(a, d)-+(f(a c).

The function g; is C? with derivative g} (z) = 8f “(z,d) — (x ¢). The mean value
theorem gives us a & € [a, b] such that g;(b) — ( ) =g ({’1)( a) and hence

(G- 2160} (0= ) = 500.d) = 1(0.0) = Flo.a) + (0.
Next we consider the function
imw:ggﬁw% y € [c,d].

The function h; is C* with derlvatlve (51, y) and the mean value theorem gives
us 71 € [c, d] such that 2 ({1, d) — %(ﬁl, c) = m(flﬂh)(d— ¢). We now have

G (Emd = 0= a) = Fb.d) = J0.0) = fland) + flac). ()

If we instead start with the function

92(y) = f(b,y) — fla,y), y€led.

We have
gQ(d) - 92<C) = f(b7 d) - f<a7d) - f(b7 C) + f(a’ C) )
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the same expresswn as for g1(b) — gi1(a). The function go is C? with derivative
g5(y) = (b y) — —(a y). The mean value theorem gives us a 1, € [c, d] such that

92(d) — 91( )= 92(772)(d ¢) and hence
(%Uj? 772) - (;_g(aﬁ 772)> (d - C) = f(b’ d) - f(b’ C) - f(avd) + f(a,c) .

Continuing as before we look at the function

ho(z) = g—“;(x,ng), x € [a,b].

Of
Oz0y

us & € [a, b] such that 8f(b n2) — 8—y(a n2) =

The function hy is C! with derivative (x, 772) and the mean value theorem gives

L (&5,m2)(b — a). We now have

8x3y
I (eam)(b—a)c—d) = F(b.d) — F(b,¢) — flad) + Fla,)
0xdy 2112 B ’ ’ .

Comparing with (x) we see that

0% f
6x8

82
s (€)= 5oL (6, (s%)

where (£, mx) € [a,b] X [e,d]. Given (z,y) € U we can find » > 0 such that
[z —r,x+7r]x[y—r,y+r] CU. For any € €]0, 7] we have just seen that there exists
(&kymi) € [x — €2+ €] X [y — €,y + €| for k = 1,2 such that (xx) holds. If ¢ — 0
then (&, ) — (z,y) for k = 1,2 and as f is C? the functions % and 86;6{ are
continuous. So in the limit we have

>*f *f
= ) O
a9[/,8y(:v,y) aya‘%(:v,y)
Theorem 3.33.2 If U CR"™ is a open set and f : U — R™ is a C? vector function,
then 5—— 836 8;10 = af-gx- foralli,j=1,....n

Proof. If i = j then there is nothing to show so we assume that ¢ < j. If f =

(f1,..., fa) and given a point = (x1,...,z,) € U we consider the functions
g(z,y) = fi(T1, . T, Ty T, T, Yy ey Ty e D)
for k =1,...,n. By Lemma 3.32 we now have

P f P Py P f
= = = , fork=1,...,n. [l
Or;0r; Oxdy Oydx  Ox;0x;

By induction on the order of differentiation the following follows
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Theorem 3.34. If U C R" is a open set, k > 2, and f : U — R™ is a C*

. ok f . ok f . .
vector function, then =l for all iy,... i € {1,...,n}, all

permutations o : {1,... k} = {1,... k}.

Proof. We use induction on the order k. The case k = 2 is Theorem 3.33. So now we
assume the theorem holds for a k£ > 2 and consider a permutation o : {1,... k+1} —
{1,...;k+1}. fo(1) #k+1then k+1 = 0(¢) foran ¢ € {2,...,k + 1}. Let
7:{2,...,k+1} = {2,...,k + 1} be the permutation that exchange ¢ and k, i.e.,
7({) = k+ 1, 7(k + 1) = ¢, and 7(j) = j otherwise. Then using the induction

hypothesis on the vector function MBJZ o we have
oF of ok af
8xia(k+1) . 81‘1‘0(2) (9:100(1) 3xia(T(k+1)) e 8xia(7(2)) (9x0(1) ’

and welet o{1,...,k+1} — {1,...,k+1} be the permutation defined by o(1) = o(1)
and o(j) = o(7(y)) if j # 1. We have in particular that o(k + 1) = o(7(k+ 1)) =
ol) =k+1.
If (1) = k + 1 then using Theorem 3.33 on the function f we have
ok O f B ok 02 f
.. 8xia(3) 8.1'0(2)81'0(1) 3:1:1

8$io(k+1) .

If we now define a permutation 7 : {1,3,...,k+1} — {1,3,...,k+1} by 7(1) = k+1,
7(k+1) =1, and 7(j) = j otherwise. Then using the induction hypothesis on the

. .8$i0<3> 8.1'0(1)8330(2) .

o(k+1) °

vector function 5 we have
Lo (2)
" of 0" of
8$io(k+l) o 8mz~a(3)8xa(1) 0m0(2) aza(l)axia(k> .. .6xi0(3)8a:ia(k“) 8$U(2)

We now let o{1,...,k+1} — {1,...,k+ 1} be the permutation defined by o(1) =
0(2),02)=k+1,0(k+1)=0(2)=k+1,and (j) =o(j) for j =3,... k.
In both cases we have
8k+1f ak+1f okt akf
Oz, Ori,

Qxia(kﬂ) . o (1) (ht1) " ° " 6%3(1) 8[Eik+1 (‘9xi3<k) e 8:101-3(1)

using the induction hypothesis

o 3kf 3k+1f

0z, Oxy ... 0z Oxyy,, ... 0%

]

If m = 1 then we have a function f : U — R and in the case of k = 2 we can
form an n x n matrix consisting of the second partial derivatives

Pf(x) 2 f(=) % f ()
81% Ox10x2 O0x10xn
Pf(®) 2 f(=) % f ()
H(w) _ 8:E2.8l’1 8:5% T 8952.6*:1:” ,
82];(:c) 82];(w) 621;(@
O0xndx1  Oxndxa Oz2
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called the Hessian, Hessian matrix, or Hesse matriz. By Theorem 3.33 the Hessian
is symmetric: HT = H. For such a C? function we have

fx+h)=f(x)+dfs(h) + %hTH(a:)h + e(h)|h|2

—~ 0*f(x) 2
+Z axz hi + _ e, Db+ e(R)|RJ2, (3.17)

where ¢(h) — 0 for h — 0. The general form of Taylor’s theorem with reminder is

Theorem 3.35 (Taylor’s theorem with reminder). If U C R"™ is an open set, f :
U — R is a C* function, z,x + h € U, and h = (hy,...,h,) then there exist
¢ €0, 1] such that

fx+h) =

hi Z iy

’L1 io=1

ax“

n

1 0~ 1f(ﬂc)
N 2 I Ry R LS

-1
91,82, 0k—1=1

1 u O f(x + Eh)
hi hi, ... h; . 1
k:l Z : Ox; 0y ... 0y, - ° i (3:18)

11,82,y =

Proof. Consider the function g : [0,1] — R given by ¢(t) = f(x + th). By repeated
use of Example 3.11 we have

Y-y aazf(mﬂh) hishia - i (3.19)

(3 7
det T, 0%y ... 0z,

11,82,...,0p=1

So Theorem 2.38 yields

k—1 (6)
f(x+th) = g(t Z g® w@tﬁ : (3.20)
=0 ’

for some & €]0,¢[. Substituting (3.19) into (3.20), and letting ¢t = 1 yields (3.18). O
The e-form of Taylor’s theorem now follows:

Theorem 3.36 (Taylor’s theorem). If U C R"™ is an open set, f : U — R is a CF
function, € +th € U for allt € [0,1], and h = (hq,...,h,) then

—~ Pf(z)
f(x+h) hi + 3 %1 97 O hihi, + . ..
IS 0" f () "
— hihi, .. b h 21
+k!‘ Z O0x; Oxyy ... Oz H 7 o Teh)h®, (3:21)

where e(h) — 0 for h — 0.
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Proof. Theorem 3.35 yields

1 o' f(x
fleth) =@+ 5 3 5t o, o,
0=1 " d1,..0=1 o g
RN 0" f(x + &h) O f ()
+ E i 122; -1 <a$ila$i2 . 8Ilk N axilaxiQ o ax2k> hilhiz e h’lk .
We now put
_ 1 ¢ O% f(x + ch) O f () hishiy -+ T

" N k! Z <a$ila$i2 -0z, B 0x;, 0y, . . .axik> | h||* ’

11,8250, =1

and we need to show that e(h) — 0 for h — 0. We have I‘IthIII <1so

n

IO

11,82, =1

OFf+eh) O f(m)
a.ﬁ[ilal'ig c. 8:15% 83@18@-2 Ce 835%

The continuity of all partial derivatives of order n implies that all terms in the sum
goes to zero for h — 0 and hence the same is true for e(h). O

Remark 3.37. If we have a C* vector function f : U — R™ then we can use the
theorem on each coordinate function f;, of f = (fi1,..., fm)-

Just as in the 1-dimensional case we can use the Taylor’s theorem to determine
(some of) the local maxima and minima.

Theorem 3.38. Let U C R™ be an open set, let ¢y € U, and let f : I — R be a
C?-function. If f(xo) is a local maximum or minimum then V f(xy) = 0.

Conversely, if V f(xo) = 0 and all eigenvalues of the Hessian H (xq) are positive
then f(xo) is a local minimum. If V f(xo) = 0 and all eigenvalues of the Hessian
H (x¢) are negative then f(xo) is a local mazimum.

Proof. Put ¢g(t) = f(xo + tVf(h)) then ¢ is differentiable, ¢g(0) = f(=x,), and
g(0) = 09 o) f = (Vf(x0), V(o)) = ||V f(20)]|*. If f(ao) isl a local maximum
or minimum in @, then so is g(0). By Lemma 2.25 ¢’(0) = 0, i.e., V f(xo) = 0.

Now suppose V f(xg) = 0 and let Aq,..., A\, be the eigenvalues of the Hessian
H. 1If eq,...,e, is a corresponding orthonormal basis of eigenvectors of H and
h=he; +---+ h,e, then we have

Fl@o+ k) = flwo) + yh Hh -+ (B[R
= f(zo) -

= f(®o) + =(Mh? + -+ Ah2) + e(h)(h + - + h2)

(ALh2 + -+ X h2) +e(h) ||k

il A

— DN

= f(xo) + = (A + 2e(h))RE + -+ (M, +2¢e(R))A2).

[\

date/time: January 15, 2024/20:45 61 of 112



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.4. CURVES AND LINES

We have e(h) — 0 for h — 0 so if A\1,..., A, # 0 then we can find r > 0 such that
|2¢(h)| < min{|A|, ..., |\u|} for ||R|| < 7. In that case A, + 2¢(h) has the same sign
as Ag. So if all \; are negative f(xo+ h) < f(xo) for ||h|| < r and we have a local
maximum and if they all are positive f(xo+h) > f(x) for ||h|| < r and we have a
local minimum. O

Remark 3.39. If Vf(xy) = 0 and we have at least one positive and one negative
eigenvalue of the Hessian then f increases in some direction and decreases in some
other directions. We then say that f(x¢) is a saddle point, and we know for certain
that we neither have a local maximum nor a local minimum.

3.4 Curves and line integrals

If we have a differential vector function x : [a,b] — R™ then the image is a curve in
R™ and we call  a parametrisation of the curve. If n = 2 we have a planar curve
and if n = 3 we have a space curve.

Example 3.12. Consider the quarter circle 2° + 4> = 1 and x,y > 0 in the plane.

The vector function « : [0,5] — R? given x(t) = (cost,sint) is a parametrisation

of the quarter circle, but so is y : [0, 1] — R? given by y(t) = (hg, IHQ) Indeed,

2
2 2 042 1 44 4 442 2, .4 . .
)+ ()" = L2ttt = 2040 — 1 So a curve can be parameterised in

1442 1442 1422+t 7 142244
many ways.

The variable ¢ € [a,b] may represent time and the curve the trajectory of a
particle moving through space. With such an interpretation the derivative @’(t) is
the velocity at time ¢ and the length ||@'(t)] is the speed. This is often expressed as
% = ‘ ‘il—“t“ |, where s represent arc-length on the curve. In order to find the length of
the curve, i.e., how long have the particle moved we need to integrate the speed:

/—dt /||a: )il dt (3.22)

An other way to determine the length of the curve is to approximate by polygons.
We can evaluate the curve in points a =1ty < t,< --- < t, = b and consider
the polygon with vertices x(to), z(t1),...,x(t,), see Figure 3.4. The length of the

o)

Figure 3.4: To the left a curve and a polygonal approximation. To the right a curve
with a kink and a cusp.
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polygon is obviously S%_, ||&(ty,) — @(ty_1||. If hy = t; —t_, then Taylor’s theorem
tells us that ||x(ty) — (ti—1)|| = ||’ (tk—1) || + €(hk)|hk| and using this it can be
shown that if maxg_;__, |hx| — 0 then the polygon length converges to the length
defined by (3.22).

If ’(x) # 0 for all x € [a,b] then the curve has a well defined tangent at each
point in the direction of @’(x). We then call the curve regular. At points where
a'(x) = 0 the curve may have a kink or a cusp, see Figure 3.4.

Now suppose that we have a domain U C R" with ([a,b]) C U and a function
f U — R. We want to integrate f over the curve. If we want to mimic the
definition of the Riemann integral then we could cut the curve into pieces, choose
a point in each piece, evaluate the function f in that point, multiply the value of
the function with the length of the piece, and add the result of all the pieces. If
we compare the length of piece between x(t) and (¢t + h) with h then we have
W = [|&/(t)|| + €(h). So if the curve is sampled more and more densely the
procedure outline above leads to the expression

/OLf(m)dsz/abf(x(t i = /f e ()] dt (3.23)

called the line integral of f along the curve. We will not prove that, but we will
prove that all parametrisations yields the same result.

Suppose we have a differentiable function ¢ : [¢,d] — [a,b]. Then Theorem 2.63
tells us that

,,,,,

/f Nl (D)l dt = /f M= (g()llg' () du

On the other hand if ¢ is monotonically increasing then y = xog is also a parametri-
sation and y'(u) = «'(g(u))g'(u). Hence

[ sy @ian= [ sl ol

and we see that the expression (3.23) does not depend on the parametrisation.

If v:U — R" is a vector function on domain U C R" and x([a,b]) C U then we
can take the inner product with the tangent vector t = ‘(iif = Hw;\l and integrate the
result:

/OL<t,’U>dS:/OL <i_f,v(:c)>d8=/ab<%i—f,v(m)>$dt
B /: < (é) i_::?”<w>> %dt = /ab<93/(t),v(w(t)))dt. (3.24)

This is called the line integral of v along the curve. A calculation as above shows
that the result does not depend on the parametrisation (Exercise 3.2).
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3.5 Integration in higher dimensions

Integration in R™ for n > 2 is considerable more involved that in integration in R
as we did in Section 2.3. The length of the interval [a,b] is b — a, but if we have a
domain in the plane what is the area?

If ACR" and f: A — R is continuous then we would like to integrate f over
A, i.e., calculate fA f(z1,...,2,)dx, . ..dz;. We have on example where it is clear
how this should be done. If A = [ay, b1] X [ag, by] X - -+ X [an, b,] C R™ then we simply
le

t bi b bn
/f(m)da:n...dxlz/ / flzr,. .. x,)de, ... dzy . (3.25)
A ar Jaz an

We only need to show the following result.

Lemma 3.40. If A = [ay,b1] X [ag, bo] X -+ - X [ap, bp] € R™ and f: A — R is contin-
uous then the function g : [a1,by] X -+ X [ap_1,bp—1] = R given by g(xq,...,2,-1) =
ff: f(x1, ..., xy_1,t)dt is continuous.

Proof. We have

lg(@1, . Tne1) — 9(W1s - Y1)

bn,
S/ ‘f(xla-'-axnflat)_f(yla"wynflat)’dt:

and as f is uniformly continuous it is not hard to show that so is g. The details is
left as Exercise 3.3 O

3.5.1 Integration in the plane

Let © C R? be a domain in the plane and let f : Q — R be a continuous function.
We want to define the integral of f over  and we will write it as [, f(x)dA.
Suppose we have a differentiable map @ : [ay, bi] X [as, by] — R? such that the image
of ¢ is Q, i.e., x([as, b1] X [ag, by]) = Q, i.e., a parametrisation of (.

Inspired by the definition of a line integral we will first see what happens to the
area of a small square under a differentiable map. The differential dz maps the unit
vectors (1,0) and (0, 1) to the partial derivatives g—qﬁ and 8% and a small square
with edges he; and he, has area h? and is approximately mapped to a parallelogram
with edges haa—fl and hng. The area of that parallelogram is h?| det J| where J is

the Jacobian matrix. We will now define the integral of f over Q2 by

/Qf(w)dA:/l C F@(u,0)] det J(@(un, w))| dus duy . (3.26)

Just as for line integrals it can be shown that the result is independent of the
parametrisation.
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Ezxample 3.13. Consider the parametrisation x : [0,7] x [0,27] — D, of the disc
with radius r, given by x(p, 8) = (pcosf, psinf) (polar coordinates). The Jacobian

ofwisJJ = (% %)= (n o ;f:iisngg) and the determinant is det J = p. The area of

the disc can be found by integrating the constant 1 over the disc, i.e.,

r 2 r 2 r
/ ldA:/ / detJd@dp:/ / pd@dp:/ 2rpdp = mr? .
D, 0o Jo 0o Jo 0

3.5.2 Integration in space and higher dimensions

Domains in higher dimensions can be treated the same way. Let 2 C R"™ and
let f: Q — R be a continuous function. We want to define the integral of f
over ) and we will write it as fQ f(x)dV. Suppose we have a differentiable map
x : [a1,b1] X [ag,by] X -+ X [an,b,] — R™ such that the image of x is Q, i.e.,
(a1, b1] X [ag, by] X -+ X [an, b)) = Q, i.e., a parametrisation of 2. We then define
the integral of f over () by

b1 bo bn
/f(a:)dV:/ / o [ Fa(u,v)) | det I (@ (ug, ua))| du, - .. dus duy . (3.27)
Q ay as an

Again it can be shown that the result is independent of the parametrisation.

FExample 3.14. Consider the following parametrisation of the solid ball with radius 7:
@ : [0,r] x[0, 7] x[0,27] — B, given by x(p, 0, $) = (rsinf cos ¢, r sin @ sin ¢, r cos §).
The Jacobian is

sinfcos¢ rcosfcos¢p —rsinfsing
J = | sinfsing rcosfsing rsinfcos¢ |
cosf —rsinf 0

with determinant
det J = p? cos f(cos f sin § cos® ¢ + cos 6 sin 0 sin” ¢)
+ p* sin O(sin” § cos® ¢ + sin? @ sin? )
= p*(cos® Osinf + sin® §) = p*sind.

So the volume of the ball is

r ™ 2
/1dV:/// det Jdedf dp
B 0 0 0
r ™ 2 r ™
:/// p2sin9d¢d9dp://27Tp2sin9d9dp
0 0 0 0 0

T T 4
= / 21[— cos )7 p* dp = / drp*dp = gm’?’ :
0 0
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3.5.3 Surface integrals

If U C R? and we have a differentiable vector function « : U — R” with n > 3 then

the image is called a surface in R™ and we call & a parametrisation of the surface.
If the the partial derivatives g—i and g—;’f spans a plane, i.e., they are linearly

independent, then we call the surface reqular and it has a tangent plane at each

point, spanned by the partial derivatives, see Figure 3.5.

v

u

Figure 3.5: A parametrisation of a surface.

We would like to be able to integrate functions over the surface. A small square
in the parameter plane with edges he; and he, are approximately mapped to a
parallelogram with edges hai and h‘g’” We first determine the area of that paral-
lelogram. If we let ham be the base then it has length Hh‘% || and the height of the

parallelogram is

0w _ (hgyhan),0m) |2 G )
o iz e L N

So the area is
e
ou

where J = (22 22 ) is the Jacobian of x. If S is a surface and @ : [a1, by] X [az, by] — S
is a parametrisation of S then the integral of a function f defined on a set A C R"
with (U) C A is

o - (e ey ey (B BE)

by by
/ fdA = / f(x(u,v))dvdu. (3.28)
S ay Jay

As before it can be shown that the result does not depend on the parametrisation
x. If f=1on S then we obtain the area of S.
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FExample 3.15. Consider the parametrisation of the sphere with radius r given by
x (0, ¢) = (rsinf cos ¢, rsinfsin ¢, r cos ) for (0, ¢) € [0, 7] x [0,27]. The Jacobian
is
rcosfcos¢p —rsinfsing
J = |rcosfsing rsinfcosep |,
—rsinf 0

and we have

2

ox

2.l = 2 cos® 0 cos® ¢ + 12 cos? Osin? ¢ + r?sin? 6 = 2,

U
Jx Ox

<a—,a—>:—r2005951n9008¢sin¢+rzcosﬁsinﬁcos¢sin¢:O,

u’ Ov

ox ||? 9 . 9, . 9 2 i 2 2 2 2

a0l =7 sin” #sin” ¢ + r~sin” f cos® ¢ = r-sin” 0.

v

So JTJ = (" ,20,,) . the determinant is det(J”J) = r*sin> ¢, and the area of the
sphere is

s 21 ™ 2
/1dA=/ / \/det(JTJ)dgbdez/ / r2sin 6 de A0
S 0 0 0 0

= / 212 sin 0 df) = 277 [— cos 0] = 4mr? .
0

3.6 Vector fields

Let U C R™ be an open set and let f : U — R". Then we can think of f as a vector
field on U, i.e., attach the vector f(x) to the point x, see Figure 3.6 left. It could

R O T -

I ! /// 1 If(x) [ R !
NN g R
'\\:\..///..\t: 90 N
II L] I\I 1 L] tI ~ "

-o\ \-—o - [~ ~ /N ] 7\ -~ -~ -
NNV S ()RR
//_.\\\_.// 3\ A L
SRS B ERAS
II II ot 1 — t o

Figure 3.6: Left: A vector field on R2. Right: Level sets of a function and its
gradient field.

be the velocity field of a fluid, the inner forces or strains in a beam, the electric field
around an antenna, etc.
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Definition 3.41 (Gradient). Let U C R"™ be an open set and let f : U — R be
differentiable. If (-, -) is an inner product then the gradient of f at € U is a vector
Vf(x) € R" such that (Vf(x), h) = dfzh for all h € R™. If we consider € R" as
a column matrix, the inner product (-,-) is the usual inner product (x,y) = 'y,
and J(x) € R'™" is the Jacobian matrix then we have V f(x) = J(x).

Remark 3.42. The gradient V f(x) of a function f : U — R is often confused with
the differential df,. But df, is a linear map R™ — R, i.e., a linear form and is
defined with out any reference to an inner product. We can also define df, if we
replace R" with a abstract vector space. The gradient is a vector V f(x) € R" and
can only be defined if we have an inner product. Different inner products leads to
different gradients. If we consider vectors in R™ as columns and use matrix notation
then df, is represented by the Jacobi matrix J(x) € R™™ and Vf(x) € R™!. It is
only if we use the usual inner product in R™ that V f(z) = J(x)”.

Remark 3.43. If f is a differentiable function with gradient Vf and v € R" is a
vector that is tangent to a level set. Then

(Vf(@),v) =dfe(v) =0 f(x) =0.
That is, the gradient is orthogonal to the level sets, see Figure 3.6 right.

In dimension one a vector field on an interval [ is just a function f : I — R
and by integrating it we see that it is gradient field: f(z) = & f;; f(t)dt. In higher
dimensions gradient fields are special.

Let U C R™ be open and let v(x) = (vi(x),...,v,(x)) be a C! vector field (or
function) R™ — R". If v is a gradient field, v = V f, then v, = % and v has the
Jacobian matrix

dvy vy *f %f
Vuy oo 0 Do 922 " Bupdm
J= =1 - =1 - |
ey Ovn 9% f o%f
Vo, ol Foom c oaZ

i.e., J = H the Hessian of f. In that case we can see that J is symmetric. The
converse 1s true under some condition on the domain U.

Theorem 3.44. Let B(xg,r) C R" be an open ball. A C vector field v : B(xg,r) —
R™ is a gradient field if and only if the Jacobian matriz J is symmetric at all points
x € U. In that case we have v = df, where

flx) = /0 (v(xg+t(x —x)), ® — o) dt . (3.29)

Proof. If v = df then the Jacobian is J = H is the Hessian of f which is symmetric.

Ovi

Conversely, assume the Jacobian J = ( Bm~> is symmetric and ||h|| < r. Put
J

g(s,h) = /Os<'v(:130 +th),hydt.
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Observe that f(x) = g(1,z — xy). We have g(0,h) = 0 for all h, so g—}i(o,h) =0
for all i = 1,...,n. Furthermore,

0%g 0%g 0
Dtoh,; (s,h) = Oh.0t (s,h) = oh,

= ii $0+th

Z

(v(xy +th), h)

Vh; + vi(xo + th)

using the symmetri of J

" v
:tzah
J=

= t(Vu;(xzo + th), h) + vi(xo + th)

(.’BQ + th)h + Ul(wo + th)

0
As 22 (t, h) and tv;(zo+th) both are zero for t = 0 and they have the same derivative

with respect to ¢ we must have %(t, h) = v;(xy + th). Letting ¢ = 1 we see that
Vfi(x)=Vyg(l,x —xy) = v(x). O

Remark 3.45. The theorem says that a vector field with a symmetric Jacobian matrix
locally is a gradient field. We may or may not be able to piece local solutions together
and obtain a global solution, see Figure 3.7.

Figure 3.7: If we have a vector field v with symmetric Jacobian matrix and functions
fi with V f; = v on each open ball, then they differ by a constant on the overlaps.
To the left we can add constants to the functions and obtain a function on the union
of the balls. But if we add the red ball to the right we may have different constants
on the two overlaps with the red ball and in that case we cannot find a solution on
the union of the balls.
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FExample 3.16. Let v = — @Y defined on the annulus 1 < 22 + y? < 1, see

10y/22 4y 4
Figure 3.8 left. It is the gradient of the function given by f(x,y) = —”xl?yQ
below.

, shown

Example 3.17. Let v = % defined on the annulus % < 2?2+ y? < 1, see
x2+y
Figure 3.8 right. It is the gradient of the function given by f(x,y) = %, shown

below. But we can not define it on all of the annulus.

1
0.5
0

-0.5

-1

Figure 3.8: Top two vector fields. Below functions having these gradients.

Remark 3.46. To characterise the domains U € R™ where symmetry of the Jacobian
matrix of a vector field v on U implies the existence of a function f : U — R with
V f = v we need concepts from algebraic topology: The domain should be simply
connected, but to explain the precise meaning of that is beyond the scope of this
book.

Definition 3.47 (Divergence). Let U C R"™ be an open set and let v = (vq, vy, ..., v,)
be a differentiable vector field on U, i.e., v : U — R" is differentiable. The divergence

of v is 9 9 9
. U1 (%) Un
divo=—>+—"+--- . 3.30
ox,  0x9 ox,, ( )
The notation divv = V - v is often seen and if we consider V as a vector with
components %, cee % and formally calculates the inner product between V and

v then we obtain the divergence, c.f. Exercise 3.1.

Remark 3.48. As the Jacobian matrix of v is

dur Ov1
oxr1 Oxn

J=1: ]
Ovn Ovn.
ox1 Oxn
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we have divv = trace J.

If we think of the vector field as the velocity field of a fluid then the divergence
measures the infinitesimal expansion or contraction of the fluid . The velocity of an
incompressible fluid has zero divergence.

Ezxample 3.18. If v = —%% from Example 3.16 then

104/ 22 +y?

divv= ——F———=+ —————
0r10+/22 +y2 Oy 10/2% + 32
1 1 x? + 1 e
10\ /2292 (@422 a2 y2 (22 +y?)32
1 22 4 2 72 . 22 4y y?
10 \ (22 + 4232 (22 +12)%2 ' (2244232 (a2 + y2)3/2
1 y? + 22 B 1
10 (22 + y2)3/2 10+ /22 + 2 ‘
— (—y,l’)
Example 3.19. If v = 0o from Example 3.17 then
0
divev = °

9 —y
e — + S —
9r10y/22 + 42 0y 10/2% + ¢

1 —yT n zy -
10 ($2 —|—y2)3/2 (mQ +y2)3/2 -

Definition 3.49. Let U C R" be an open set and let f : U — R™ be a C? function.
The Laplacian of f is

o0 f o0 f
Af =di =S 44— 31
f=divVf 922 + +8x% (3.31)

The operator A = div V is called the Laplace operator.

3.6.1 The divergence theorem

Given a vector field on a domain. The divergence theorem says that the integral of
the divergence over the domain is the same as the integral of the normal component
of the vector field over the boundary of the domain.

Dimension 1

Consider a differentiable vector field on an open interval I C R, i.e., a differentiable
function f: I — R. and an interval [a,b] C I, see Figure 3.9. We can think of f as
the velocity of electric charges in a wire, as the velocity of a gas in a thin tube, or
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a b

Figure 3.9: Flux out of an interval.

as the velocity of cars on straight road. We are interested in fluz of the vector field
f, i.e., how much charge or air that flows in or out of the interval [a, b]. The rate of
flow out of the interval at a is —f(a) and the rate of flow out of the interval at b is
f(b). So the total rate of flow (or flux) out of the interval is

:/ f(z)dz. (3.32)

We now consider a C* vector field v(x,y) = vi(x,y)e; + v2(z,y)es on an open set
U C R? and at first a rectangle [a, b] x [c,d] C U, see Figure 3.10. The rates of flow

AR IS
2 zr s
M rrrrrrrl?
gl A
T SV AT
C// o 777777 7

Dimension 2

n
V“ ~ 7 ~ 7 PPl ndPadPad

a b
Figure 3.10: Flux out of a rectangle.

out of the rectangle at the sides z =a or x =b and ¢ <y < d are

[ tenan= [ o, -e) = [“wta .m0,

and

d d d
/mmw:/uwwﬂmmz/wmwmwwm%

respectively, where n is the outward normal. So the total flux out of the two vertical
sides is

t/"<v<b,yx7zauy>>dy-+b/’<v<a,y>,n<a,y>>dy
:/m&w@—/m@w@:/w@m—mwmw
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Similar, the total flux out of the two horizontal sides is

/j(v(as,d)’n(a:,d))der/ab<v(:v c),n(z,c))dr = /bUQ(ZE d) dx—/beQ(x7c) da
:/G(Uz(l‘d)—vgxc dx_/ %dydx

We see that the total flux out of the rectangle is

[ wte)nten)dy+ [ (ot d)ni.d)ds
+ [ )b dr+ [ oo, niz0) ds

//—d dy +/ / 2 qe dy
//(a%l (%2) dxdy—//dlvvdxdy (3.33)

Now consider the polygon P = (pi1,p2,...,Pps) with axis parallel edges to the
left in Figure 3.11. The total flux out of the domain inside the polygon is

LKL AAL LN
N i
s L /////// 4
AARARA, Ay 4
VSIS /7
Y ST ’/
[N R i o /S /
VAl aPala Palal alad /
c1 4 AN} Pl atiad S/
Pl - e r ~P2 e o~ ~ oo - >

- PP P S e S e

ay b1 = Qa2 bz PR P S S S S S B S S S S

Figure 3.11: Left: The flux out of an axis parallel polygon. Right: The flux out of
a domain €2 with boundary T

/Ym@amw@»m+/?m@wmwmmw

+/2mxm@me@»¢wy/me@w»w@y»@
+/7mm@mmdmw+éim@wmwmmw

—i—/l(nl(:v,dl),v(x,dl)>dy+/ (ny(ay,y),v(a1,y))dy (3.34)

ai C1
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If we look at the (dashed) line between the points p3 and p; then we see that the
two normals are in opposite direction and hence n; + ny = 0 on that line. As we
furthermore have that b; = ay we obtain

dy dy
/ (na(by, ), w(br, ) dy + / (a2, y), v(az, ) dy
_ / (1102, ) + Mafan, y), v(az, y)) dy = / (0, v(az,y)) dy = 0.

Adding this to (3.34), rearranging, and using (3.33) we can write the total flux as

by dy
/ (na(, 1), oz, ¢1)) da + / (na (b1, ), (b1, 9)) dy

ai C1
di

b1
n / (a2 dy), w( dy)) dy + / (na(a, ), v(as, 9)) dy

ai C1
da

b2
+ / (na(z, c2), 0(x, e2)) da + / (na(ba, ), (b2, ) dy

a c2
da

b2
n / (na(, dy), v(z, dy)) dy + / (na(as, ), v(az, ) dy

a2 Cc1

d1 b1 da ba
:/ / divvdxdy—l—/ / divodzdy. (3.35)

If we have a general domain Q) C R? with a piecewise C* boundary I' as to the right
in Figure 3.11, the total flux out of the domain is [.(v,m)ds where we integrate
with respect to arc-length on the boundary curve I'. By approximating the domain
by the union of rectangles that only intersects at the edges, as in the example to the
left in Figure 3.11, we see that we have

/(’U,n> ds :/divvdxdy. (3.36)
r Q

Arbitrary dimension

If we have a C! vector field v on an open set U C R™ and an n-dimensional box
[a1,b1] X [ag, by] X -+ X [an,b,] € U then a calculation as in (3.33) shows that total
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flux out of the 2" sides is
bs b
/ / (v(ay, xe,...,x,),n(a, g, ..., x,)des...dz,
2 n b2 bn
+/ / (v(by,x9,...,2p), (b1, xa, ..., x,)das...dz,

as an

by bn—1

+ / <’U(l’1,...,I’n_l,bn),n(ffl,...,(L’n_l,bn)dl‘l...dl‘n_l
ai an—1

by

+ [

ai

bn—l
. / (v(x1, ..., xp_1,bp), (21, ..., Tpo1,b,)day ... da, g
an—1

by bn
:/ / divo(zy,...,x,)dzy ... dz, . (3.37)

By stacking such boxes we can approximate any bounded domain 2 C R" with a
piecewise C'' boundary and we see that the equations (3.32) and (3.36) are special
cases of the following theorem

Theorem 3.50 (Divergence (or Gauss) theorem). If v is a C* vector field on an
open set U CR™, Q C U is a domain with a piecewise C* boundary S = 0%, and n
is the outward normal on 0S) then

/lm('v,n) ds = /Qdiv'vdU. (3.38)

3.6.2 Stokes theorem

Stokes theorem are concerned with vector fields in dimension three, i.e., with a
vector fields defined on some open set U C R3. We first need the definition of the
curl of a vector field.

Definition 3.51. Let v : U — R3 be a C! vector field defined on some open set

UCR Ifv(z,y,2) = (vi(z,y, 2),v2(z,y, 2), v3(x,y, 2)) then the curl of v is a new
vector field defined by

B 6U3 81)2 6’01 81)3 81}2 81)1
curlv = <8y 0z’ 0z Oz’ Ox 8y) ' (3:39)

The notation curlv = V X v is often seen and if V is considered as a vector with

components (8%, a%, a%) and formally calculate the cross product V x v then we

obtain curlw, c.f. Exercise 3.4.

Ezxample 3.20. Let v(z,y,2) = (x,y, z). Then curlv = 0.
Ezample 3.21. Let v(z,y,2) = (—y,x,2* + y* + 2?). Then curlv = (2y, —2x,2).
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Ezxample 3.22. Let w = (0,0,w) and define a vector field by v(x) = w x @. Then
v(z,y,2) = (—wy,wz,0) and curlv = (0,0, 2w) = 2w.
A rotation around the z-axis with angular velocity w is given by

x cos(wt) —sin(wt) 0\ [z
y| = |sin(wt) cos(wt) 0] | vo
2 0 0 1/ \z
The velocity field is
x —wsin(wt) —wcos(wt) 0 T
y | = | wcos(wt) —wsin(wt) 0 Yo
Z 0 0 0 20
—w(xgsin(wt) + yo cos(wt)) —wy 0 x
= | w(zgcos(wt) —ypsin(wt)) | =1 wx | =(0] x|y
0 0 w z

Now let w be an arbitrary non zero vector in space, let xy be an arbitrary point
in space, and define a vector field by v(x) = w X (x —x). By choosing a coordinate
system such that x( is the origin and the z-axis is in the direction of w we see that
curlv = 2w. We also have that the vector field v is the velocity field of a rotation
around the z-axis with angular velocity w.

In other words, the curl of the velocity field of a rotation has the same direction
as the axis of rotation and the size is twice the angular velocity.

Remark 3.52. If we interpret a vector field v as the velocity field of fluid and consider
a small volume around a point & then v(x) describes the instantaneous translation
of the volume, divv(x) describes the instantaneous expansion or contraction, and
curlv(x) describes the instantaneous rotation of the volume (up to a factor of 2).

Given a surface in U C R? and a vector field v on U. Stokes theorem says that
the integral of the normal component of curlv over the surface is the same as the
integral of the tangential component of v along the boundary of the surface.

First a couple of definitions.

Definition 3.53. Let € > 0 and let @ :Ja—¢, b+¢[x]c—¢, d+€[— R? be a C'* function
that parameterise a regular surface. Then x([a, b] X [, d]) is a regular surface with a
piecewise C'' boundary. The boundary of the surface is the image of the boundary
of the rectangle.

In Figure 3.12 we have shown an example of a regular surface with boundary.
Observe that the orientation of the surface (what way does the normal point) and
the boundary (what way does the tangent point) are compatible according to the
right hand rule.

By a tedious, but straight forward, calculation we can show Stokes theorem for
this kind of surfaces.
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B

Figure 3.12: A regular surface S = S; U Sy with boundary.

Lemma 3.54. Let U C R? be an open set, let v : U — R? be a vector field on U,
and let S C U be a reqular surface with a piecewise C' boundary and with normal
N. Then we have

/S (curlv, Ny dA /8 (o t)ds, (3.40)

where t is the tangent of the boundary 0S.

Proof. Let x : [a,b] x [b,c] — S be a parametrisation of S. Then we have

N—%, dA = ‘833 02|| fudo,
|22 x 92 du "
and
/(curl’deA //<curl'v O gi> dudv.
We have
ox Ox %1;3_% %%_%%
ov1 _ dus z0r _ Oz 02
(o5 ) = < %5 ) \p% g2 >
o oy dudv  Oudv
_ Ovy (0z0x 0Ox 0z v (Ozdy Oy dx
T 0z (%%_%%> By (%%_%%)
Ovy (Ox 0y Oy ox Ovy (Oy 0z 0z 0y
O (%%_%%) 9z (a_u%_%%)
oy (200 _0:00) O (0200 _0:02)
Oy \Oudv Oudv Or \Oudv Oudv

The boundary 0S consist of four pieces x(t,c), t € [a,b], (b, t), t € [c,d],
x(a+b—t,d),t e lab], and x(a,c+d—1t), t € [c,d]. The velocity is found by
differentiating with respect to ¢ and the tangent ¢ by normalising the velocity. The
speed is the norm of the velocity. In the case of the first piece we have

O R(o  ds - |
0

N

ot
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and similar for the other three curves. We obtain
b ox(t,c) d Oz (b, t)
/as<v t)ds = / <'v, Y > dzf—i—/C <v, Y > dt
d J—
/ < ox a—l—b t, d)> dt+/ <v,8w(a,c+d t)> &
c ot
ox
> < 5 — (b, v)> dv
b ox d ox
—/a <'v au(u d)> du—/c <v,%(a,v)> dv
d d

ov B
b d 8 am d b a am
:—/a /C %<’U,%(U,U)>dvdu+/c /a %<U,%(U,U)>dudv

Now
ov Ox v Ox
(o)~ (5or5e)
_<8_'v@+8vﬁy ov 0z 3ac> <8'U@x Ovdy  Ovoz 8_:13>
drdu ' dydu ' 0z 0u v oz ov ' dydv 0z 0v du
ov, Ox (%1 (?y Ov, 0z Ov, Oz 81}1 8y Ov, 0z \ Ox
(6x du ' Oy du 0z 6u> <(‘9x v dy o 0z 81}) ou
N <8vg ox 81)2 ay Oy (’92’) dy (002 ox 802 8y Oy 82) @
oxr Ou 8y 8u 9z Ou ) v Oz Ov 8y v 8z v ) du
Ovs 0x  Ovs 8y Ov; 0z \ 0z Ovs 0x 81)3 8y Ovs 0z \ 0z
* (ax ou ' oy au 0z au) o (83: v oy v 0z 81}) ou
vy 03/ ov; 0z '\ Ox ovy 8y ovy, 0z \ Ox
(8y ou 0z 8u>8__<8y ov 0z 81})%
0vy Ox (%2 0z \ Oy 0vy Ox 3112 0z Oy
(8x ou 0z 8u>8__((91: ov 0z 8@)%
Ovs Ox 81)3 dy\ 0z Ovs Ox (%3 dy\ 0z
(ﬁxau Jy 8u>8__<8x ov Oy 87))%
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_ Ou (8z8x 8m82> oy (8x(’3y 8y8x)

T 0z \dudv  Oudv _8_y Judv  Oudv
Ou (0s0y 0ydr) 0w (340 020y
Or \Oudv Oudv 0z \Oudv  Oudv
Ou (y0: _ 0:0y)  Duu (0:00 00
Oy \Oudv Oudv Or \Oudv Oudv
— 1 a_m X a_a:
= {eurly, = x —- ).
This finishes the proof. n
Definition 3.55. Suppose we have regular surfaces S, ..., S, with piecewise C*

boundaries 0S51,...,0S,. If they only intersect at the boundary, i.e., Sy NS, =
0Sk N OS, if k # ¢, the union S = J,_, Sk is a piecewise regular surface with a
piecewise C'! boundary.

In Figure 3.13 we have shown an example of a piecewise regular surface S =

P

St ot At

to
Figure 3.13: A piecewise regular surface S = S; U S, with boundary.

S1 U S, with a piecewise C! boundary. The intersection S; N Sy is the dotted line
051N 0S,. Observe the behaviour of the tangent vectors on this interior boundary.
With these preparations it is hard to show Stokes theorem.

Theorem 3.56 (Stokes theorem). Let U C R? be an open set, let v : U — R be
a vector field on U, and let S = J;_, Sk C U be a piecewise reqular surface with a
piecewise C1 boundary and with normal N. Then we have

/S (curlv, Ny dA = / (v,%) ds (3.41)

oS

where t is the tangent of the boundary 0S.

Proof. By Lemma 3.54 the theorem holds for each surface Sg, i.e.,

/(curlv,N>dA:Z/ <curlv,N)dA:Z (v,t)ds.
S k=1 "%k k=1

0S8k
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Now we only have to note that if the normals of the surfaces are in agreement with
each other then the tangent vectors of two neighbouring surfaces are opposite of each
other. That means that the integrals over the interior boundaries (the dotted curve
in Figure 3.13) cancels and we are left with the integral over the exterior boundary
(the solid curve in Figure 3.13). O

As integration over the empty set is yields zero we immediately obtain the fol-
lowing result.

Corollary 3.57. Let U C R3 be an open set, let v : U — R3 be a vector field on U,
and let S = J;_, Sk C U be a piecewise regular surface without boundary, i.e., we
have only interior boundaries, and with normal N. Then we have

/(curlv, N)dA=0. (3.42)

A surface without a boundary is called a closed surface.

Ezxample 3.23. In Example 3.21 we saw that the curl of vector field v(x,y,z) =

(—y,z, 2% + y*> + 2?) is curlv = (2y,—22,2). Now consider the truncated unit

sphere in Figure 3.14. It is cut at z = 72 so the boundary is a circle with radius

S

Figure 3.14: The unit sphere cut at zo = 3.

ro=+/1—22 = ‘/75 Suppose we want to find the integral of the normal component
of curlw over this surface. Using Stokes theorem we have

/(curl'v,N) dA= [ (v, t)ds.
s a3

We can parameterise the boundary 05 by x(t) = ro(cost,sint, 1), t € [0,27] (we
are using the outward normal). The derivative is @'(t) = ro(—sint, cost,0). Using
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(3.24) the line integral of v along the 0S5 is
2m
| wtyds= [ (ol a
as 0
o —rosint —rosint
= / < rocost |, | rocost > dt
0 1 0
2 2w 2
—/ (rosin®t + rj cos*t) dt = / rodt = 2mry = 271 =T.
0 0

We can get the result even easier. The boundary 0S is also the boundary of the disc
D= {(z,y,2) | 2* +y* <12 Az = ro}. The normal of this disc is Np = (0,0, 1) so
we have (curlv, Np) = 2

/(curlv,N}dA:/ <v,t)d3.:/<curlv,ND>dA:/2dA
S a5 D D

=2 xareaof D =2mr =7.

3.7 Exercises

EED) v1(T15,Tn)
Exercise 3.1. Formally calculate : . ( : > .

9

dan

Exercise 3.2. Show that the line integral of a vector field (3.24) does not depend
on the parametrisation.

Exercise 3.3. Let f : [a1,b1] X - X [ay, by] — R be uniformly continuous and define
qg: [(ll,bl] X - X [an_l,bn_l] — R by

bn
g(xy, .. Tpy) = flzy, ... xpq,t)dt.

an

Show that ¢ is uniformly continuous.

v3 (I,y,Z)

el

oz v1(z,y,2)
Exercise 3.4. Formally calculate (%) X (v;(:ayz)) .

oz

Exercise 3.5. Check Example 3.20 and 3.21.

Exercise 3.6. What is the result in Example 3.23 if we cut the unit sphere at z = h
for some h € [—1,1]?

date/time: January 15, 2024/20:45 81 of 112



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.7. EXERCISES

date/time: January 15, 2024/20:45 82 of 112



Bibliography

[1] Beelen, Peter, 01001 Mathematics 1a, Lecture notes, DTU Compute, 2023,
https://01001.compute.dtu.dk/_assets/enotesvoll.pdf,

83 of 112


https://01001.compute.dtu.dk/_assets/enotesvol1.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

date/time: January 15, 2024/20:45 84 of 112



Appendix A

More on the real numbers

A.1 Ordered fields

What kinds of numbers do we know?

e The natural numbers or positive integers:

N=2Z,={1,2,3,... }. (A1)
e The negative integers:
Z_={-1,-2,-3,...}. (A.2)
e The non negative integers:
Zo=1{0,1,2,3,...}. (A.3)
e The integers:
Z=A...,-3,-2,—1,0,1,2,3,...}. (A.4)
e The rational numbers:
_ P
Q—{g‘pGZ,qEN}. (A.5)

e The real numbers R and the complex numbers C.

We always consider these different sets of numbers as subsets of each other:
NCZyCcZcQcCRCC. In [l] we saw how to get from the real numbers R to
the complex numbers C. And on the intuitive level it is perhaps obvious how first
to get from the natural numbers N to Zg, from Zg to the integers Z and then to
the rational numbers Q. There are mathematical precise algebraic constructions for
each of these steps, but we will not describe those.
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The step from Q to R is different in nature. On the intuitive level we discover
that we miss some numbers like v/2 and 7 so we include those, but exactly what
numbers are “missing” and how do we add and multiply with them? An other,
geometrical or physical, viewpoint is to consider the rational numbers as certain
points on a line and then consider the real numbers as all points on the line, but
again, it is not obvious how to add and multiply points on a line.

The six axioms of an ordered field (Definition 1.1) implies other well known
properties. Using (1.5) (with ¢ = —a) we have

VoeF:0<a = —a<0, VaeF:a<0 = 0< —a. (A.6)
As the ordering is total this implies
VaeF:0<aVv0< —a. (A7)
As 0-b =0 for all b and using (1.6) we have
Va,beF:0<aNn0<b = 0<a-b. (A.8)
As a* = (—a)? this and (A.7) implies
Va €F:0<a. (A.9)

As 12 = 1 this in turn implies
0<1. (A.10)

If0<a,a+#0and a* <0 then we have 1 = a-a~! < a-0 = 0 but that would
imply that 1 = 0. So we must have

Va e F\{0}:0<a = 0<al. (A.11)

Given the ordering “<” on the field F we can define new relations “<”, “>”, and
“>" on I by

a<b <<= a<bAha#b, a>b<= b<a, a>b <= b<a. (A12)

They satisfied the expected rules know from Q and R:

VaeF:a>a, (A.13)
Va,beF:a>bANb>a — a=0, (A.14)
Ya,b,ceF:a>bAb>c = a > c, (A.15)
Va,beF:a>bVb>a, (A.16)
Va,b,ceF:a>b = a+c>b+c, (A.17)
Va,b,ceF:a>bAc>0 = a-c>b-c. (A.18)
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Asa#b=a+c#b=cforall a,b,c €F we have

Va,b,ceF:a<bANb<c = a<c, (A.19)
Va,b,ceF:a<b = a+c<b+c, (A.20)
Va,bccF:a<bAN0<c = a-c<b-c. (A.21)
Va,b,ceF:a>bANb>c = a>c, (A.22)
Va,b,ceF:a>b = a+c>b+c, (A.23)
Va,bccF:a>bANc>0 = a-c>b-c. (A.24)

Every total ordered field contains a copy of the integers.

Lemma A.1. If (F,+, -, <) is an ordered field then we have a unique map f : 7 — F
with f(1) # 1 that preserves the addition, the multiplication, and the ordering. That
is, for all n,m € Z we have f(n+m) = f(n)+ f(m), f(nm) = f(n)- f(m), and
n<m= f(n) < f(m).

Proof. To prove existence we define f on Z recursively by letting

f(0) =0,
fn)=fn—-1)+1, forneZ,,
f(n)=f(n+1)—-1, forneZ._.

Observe that this definition immediately tells us that f(1) = 1, f(—1) = —1, and
more general that f(n+1) = f(n)+ 1 and f(n—1) = f(n) — 1 for all n € Z.

Let n € Zy we want to prove that f(—n) = —f(n) using induction on n. The
case n = 0 is trivial and if f(—n) = —f(n) for some n € Z, then

f(=(n+1)) = f(-n—-1) = f(=n) =1 = —f(n) = f(1)
=—(f(n) + f(1)

)
If n € Z_ then —n € Z, and we have — f(n) = —f(—(—n)) = = (= f(—n)) = f(—n),
i.e., the equation f(—n) = —f(n) holds for all n € Z.
Let n,m € Z. We first want to prove that f(n +m) = f(n) + f(m) using
induction on m. The case m = 0 is trivial so assume it is true for some m € Zg then

fln+m+1)=fn+m)+1=f(n)+ f(m)+ f(1)=f(n)+ f(m+1).
Similar if it is true for some m € Z_ then
fln+m—1)=fn+m)—1= f(n)+ f(m)+ f(=1) = f(n) + f(m —1),

and we are done. Next we want to prove that f(m-n) = f(m)- f(n) for all n,m € Z.
Again by induction on m. The case m = 0 is trivial and if it is true for some m € Z
then

f((m+1)-n) = f(m-n+mn)=f(m-n)+ f(n)
= f(m)- f(n) + f(1) - f(n) = (f(m) + F(1)) - f(n) = f(m +1) - f(n).
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Similar, if it is true for some m € Z_ then

f((m —1) n) = f(m-n—n)= f(m-n)—f(n)
f(m) - f(n) = f(1) - f(n) = (f(m) = FQ1)) - f(n) = f(m = 1) - f(n),

and we are done. At this point we have a map Z — F that preserves addition and
multiplication. But we still need to prove that the ordering is preserved.

First we show that if 0 < n then 0 < f(n). We do it by induction on n. The
case n = 0 is trivial, so assume it is true for an n € Z, i.e., that 0 < f(n). Then
we have 0 < 1 < f(n) +1 = f(n+ 1) and we are done. If we now have n,m € Z
with n < m then 0 < m —n and hence 0 < f(m —n) = f(m) — f(n). Adding f(n)
yields f(n) < f(m) as required.

Uniqueness follows from the fact that the condition f(n) = f(n+0) = f(n)+f(0)
implies that f(0) = 0. Likewise, the condition f(1) = f(1-1) = f(1) - f(1) implies
that f(1) = 0 or f(1) = 1. As f(1) # 0 we must have f(1) = 1. The conditions
f(n+1)= f(n)+£ f(1) = f(n) & 1 implies that our recursive definition is the only
possibility. O

Remark A.2. It is not hard to see that f is injective, c.f. Exercise A.1.

Every total ordered field contains the rational numbers as a subfield.

Theorem A.3. If (F,+, -, <) is an ordered field then we have a unique map f : Q —
F, with f(1) # 0 that preserves the addition, the multiplication, and the ordering.

That is, for all z,y € Q we have f(x +y) = f(x)+ f(y), f(x-y) = f(z)- f(y), and
r<y= f(r) < f(y).

Proof. Lemma A.1 shows that we have a unique map f : Z — F with the required
properties. If we can extend this map to Q then we must have f(g) = f(pg') =

fp)- f(g7') = f(p) - f(g)~'. So the only possibility is to define f on Q by letting
f(2) = f(p)- f(g)~" for (p,q) € Z x N. Observe that if n € N then

q

so the map is well defined. We now have

P24 = r () — fpn (o)

=(f(p)- fn)+ flq) - (m)) (f(q) - f(n)
=fp)- f(n)- fl@)~" - fn)™ + f(q) - f(m)- f(g)"

f
= 1)+ som) - f~ =7 () 1 (%)

3
o
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and

f (f—’@) — (f;—’:) — Jm) - Flgn) ™ = 1) Fm) - Fla)™ - F(n)!

m

= () - (@) - fm) - J()" = f (g) ()

n

So we now have a well defined map Q — F that preserves addition and multiplica-
tion.
If ¢ € N then f(q) #0,0< f(¢q) and 0 < f(q)~!. Soif 0 < 2 then 0 < p. Hence
0< f(p)and 0=0-f(¢)"' < f(p)- f(@)7" = f(2).
If 22 < £ then n,q > 0 and gm < np. Now f(n), f(¢) > 0 and f(q)f(m)
flgm) < ) ( )f(p). Multiplying with the positive number f(n)~'f(q)~

I
yields f (2) = f(n)"'f(m) < f(a) " F(p) = f (2)

Lol

U

A.2 Infimum and supremum

Some subsets of Q or R have a smallest and/or a largest element some do not. The
closed interval [0,1] has both a minimum (0) and a maximum (1). The half open
interval [0, 1[ has a minimum (0), but no maximum and the open interval ]0, 1] has
neither a minimum nor a maximum.

Definition A.4. Let (F, <) be an ordered set and let A C F. If there exist an
element a € A such that a < x for all x € A then we say a is the minimum of A and
we write a = min A. If there exist an element a € A such that x < a forallz € A
then we say a is the maximum of A and we write a = max A.

Definition A.5. Let (F, <) be an ordered set and let A C F. If there exist an
element a € F such that a < x for all x € A then we say A is bounded from below
and we say a is a lower bound for A. If there exist an element a € F such that x < a

for all x € A then we say A is bounded from above and we say a is a upper bound
for A.

The intervals [0, 1], [0, 1], ]0, 1[ has the infimum 0 and the supremum 1.

Definition A.6. Let (F, <) be an ordered set and let A C F. If the set of lower
bounds for A has a maximum a then we say a is the infimum of A and we write
a = inf A. If the set of upper bounds for A has a minimum a then we say a is the
supremum of A and we write a = sup A.

So if it exists then the infimum is the largest lower bound. Similar, if it exists
the supremum is the smallest upper bound.

Lemma A.7. Let (F,+,-,<) be an ordered field. If the set {%’n € N} CF has an

infimum then it is 0.
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Proof. Assume the opposite, i.e., that a = inf{%|n € N} and a # 0. As 0 is a
lower bound we have 0 < a and hence a < a+a = 2-a. As a is the largest lower

bound 2 - @ is not a lower bound so we can find n € N such that % < 2-a. But

% = % . % < % -2 - a = a contradicting that a is a lower bound. O]

The lemma implies the following results

Corollary A.8. Let (F,+,-, <) be an ordered field. If the set {%‘n € N} CF has
an infimum and x,y € F with x <y then there exist a n € N such that % <y-—uw.

Proof. We have 0 < y — x and 0 is the largest lower bound, so y — z is not a lower
bound and the result follows. O

Corollary A.9. Let (F,+,-, <) be an ordered field. If the set {+|n € N} CF has
an infimum and x € F then there exist a n € N such that x < n.

Proof. Assume the opposite, i.e., that we have an x € F such that n < z for
all n € N. Then 0 < 2z and hence 0 < z~! we also have for all n € N that
=21 L.on <t % cx = % But that means that ! is a lower bound,

n

contradicting that the infimum is 0. ]

If (F,+,-, <) is an ordered field and a,b € F with a < b then we can define the
intervals

[a,b) ={z €F|a<zAz<b}, a, b ={z €F|la<zAzx<b},
la,b] ={z €eFla<zAz<b}, la,b[={z € Fla<xz Az <b},

The first is called a closed interval, the last an open intervals and the other two are
called half open intervals. We also introduce the following notation for half lines:

[a,00[={z €F|a<ua}, | —o0,b)={xeF |z <b},
Ja,0[={z €F|a<uz}, | —oo,b[={xeF |z <b},

Corollary A.10. Let (F,+,-, <) be an ordered field. If the set {%‘n € N} CF has
an infimum and x € F then there exist a n € N such that x € [n,n + 1].

Proof. By Corollary A.9 we can find ny,ns € N such that x < ny and —z < n; and
hence x € [—ni,ma). As [-ni,n2] € U2, [n,n + 1] we have an n € {—ny, —n; +
1,....ny} such that x € [n,n+ 1]. O

Theorem A.11. Let (F,+,-, <) be an ordered field. The the following three condi-
tions are equivalent

1. Every non empty subset A C F that is bounded from below has an infimum.

2. FEvery non empty subset A C T that is bounded from above has a supremum.
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3. If lar,b1] 2 [ag,bs] D -+ D [an,by] 2 ... is a nested sequence of closed
intervals such that Vk € Ndng € N:n > ng = b, l then there exists
a € F such that (,,cylan, bn] = {a}. (The nested mtemal theorem)

Proof. If A C F then we put —A = {x € F | —x € A}, i.e., we simply multiply all
elements of A by —1. If a is a lower bound for A then —a is an upper bound for
—A. Soif B is the set of lower bounds for A then — B is the set of upper bounds for
—A. Also if b is a maximum for B then —b is a minimum for —B. So if A has an
infimum then —A has a supremum and sup —A = —inf A. This shows that 1. and
2. are equivalent.

2. = 3.: The set {a, | n € N} is bounded from above by b; so we can put
a = sup{a, | n € N}. Now a is an upper bound for {a, | n € N} (the smallest) so
a, < a for all n € N. Furthermore, every b, is an upper bound for {a, | n € N} so
a < by, for all n € N. That is, a € [ay, b,] for all n € N and hence a € ), cy[an, bn].

3. = 1.: Let A C F be non empty and bounded from below. Choose a lower
bound a; for A and an element b; € A. If a; is the largest lower bound we are
done (inf A = ay). If by is the minimum of A we are done (inf A = ;). Otherwise
consider %(al + ;) € F. If it is a lower bound for A we put ay = %(al + by) and
by = b;. Otherwise we can find by, € A such that by < (a1 +0b1) and we put as = a;.
In the first case we have by — ay = b; — —(a1 +0b) = bl 5% and in the second case we
have by — ay < %(al +by)—a; =2 254 In both cases bg —ay <l Ao,

Continuing this we way we either stop because we have found the infimum or
we have a set of lower bounds {a, € F | n € N} for A and a set of elements
{b, € A | n € N} in A such that a, < a,41 and b, < b, for all n € N| ie.,
[ani1, bni1] C [an, by]. Furthermore, b, — a,, < bl;—‘“

First we note that 0 is a lower bound for { | n € N } and any larger lower
bound must be an element of [0 Ll foralln € N. As 0 € ,en[0, 2 and hence
Naen [0, 2] = {0} we see that 0 is the largest lower bound, i.e., 0 = inf{2 | n € N}.
Now Corollary A.9 tells us that there exists a K € N such that by — a1 < K and
hence b, — a, < 2% By Condition 3 there exists an element a € F such that
Mnenl@n, bn] = {a}. We want to show that a is the infimum for A.

First we show that a is a lower bound. Assume the opposite, then there exists
an r € A such that z < a. By Corollary A.8 we have a k € N such that 1 <a-—uzx.
Next we can find an n € N such that b,, — n <3 K <z L < g — 2. This nnphes that
r<a,+a—b, Butaé€la,,b,]soa<b, and hence x < a, contradicting that a,,
is a lower bound for A.

Finally we show that a is the largest lower bound. Assume the opposite, then
there exists a lower bound x € F such that a < . By Corollary A.8 We have akeN
such that % < x —a. Next we can find an n € N such that b,, —a, § s <z L < r—a.
This implies that * > b, + a — a,. But a € [a,,b,] so a, < a and hence x > b,
contradicting that z is a lower bound for A. O]

Recall that according to Theorem A.3 we can consider the rational numbers as
a sub field of any ordered field. We first show that if an ordered field F has the

properties in Theorem A.11 then Q is dense in FF in the following sense:
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Lemma A.12. Let (F,+,-, <) be an ordered field where all subsets bounded from

below has an infimum. If x,y € F and x < y then there exist § € Q such that

s € lryl

Proof. As x < y Corollary A.8 tells us that we can find an n € N such that % <y—ux
and hence 1 < n-y—n-z. Corollary A.10 give us ny,ns € Nsuch that n-z € [ny, ny1+1]
and n-y € [ng,ny +1[. As 1 <n-y—n-z we must have n; + 1 < ny. We now have
nx < ny <y and hence "2 € [z,y]. H

Corollary A.13. Let (F,+,-, <) be an ordered field where all subsets bounded from
below has an infimum. If v € F then x = inf{§ € @‘x < g} .

Proof. Let A = {§ € Q’m < g}. As x is a lower bound for A we have an infimum
y=inf A and x <y. If z # y then Lemma A.12 tells us that we can find an § eQ

such that § € [z, :cTer], but then § < y contradicting that y is a lower bound. That
is, we must have r = y = inf A. m

If we accept that R satisfies the nested interval theorem then this property com-
pletely characterise the real numbers.

Theorem A.14. If (F,+,-, <) is an ordered field where all subsets bounded from
below has an infimum. Then there exist a unique isomorphism R — F, i.e., a unique
bijective map f : R — T such that we for all z,y € R have that f(z+y) = f(z)+f(y),

flzy) = f(2)f(y), and x <y = f(x) < f(y).

Proof. First uniqueness: Assume we have an isomorphism R — F. We have the
rational numbers as QQ subfields of both R and F. If we restrict f to Q C R then by
Theorem A.3 it has to be the identity, i.e., if § € Q then f(%’) = §. Let x € R and
consider the set A = QN [z, 00[C R. As f preserves the ordering a lower bound for
a is mapped to a lower bound for f(A), i.e., we have f(z) < inf f(A) = inf{f(g) €

F ‘ z < g} . As the same is true for the set of lower limits of A we must have
. b p

f(z) =inf f(A) —mf{— EF‘pGZAqGNAxS —} :

q q

We now have uniqueness and we also have a well defined map f : R — F. We need
to show that f is bijective and preserves addition, multiplication, and the ordering.

The ordering is preserved: Let z,y € R and assume z < y. Then we can find
= € Q such that x < ™ < y. But then

inf{BEF‘pEZAqENAx§E}<E
q q n
<inf{]—)€F‘p€Z/\q€N/\y§E},
q q

date/time: January 15, 2024/20:45 92 of 112



APPENDIX A. MORE ON THE REAL NUMBERA.2. INFIMUM AND SUPREMUM

i.e., f(z) < f(y). This also proves injectivity.

Surjective: Let y € F and consider A = {§ el ! pEZNqge NAy < g}. We
can consider A as a subset of Q and hence as a subset of R if we put x = inf {§ €
]R|p€Z/\q€N/\y§§}. Then we have f(x) =y.

Preserves addition: Let z,y € R. Put A = QN [z,00[, B = QN [y, o0[, and
define

A+B={1—?+@e@
q n

]ZEA/\QEB}.
q n

If @ and b are lower bounds for A and B, respectively then a + b is a lower bound
for A+ B using this is not hard to see that 4+ y = inf A + inf B = inf(A + B) and

f(x+y)=inff(A+B):mf{?+TeQ'EeAATeB}
q n q n

m
xsgAyg—}
q

:inf{ng@eQ
qg n n

:inf{]—?e(@

, x§§}+inf{%e@‘y§%}Zf(ﬂi)Jrf(y)-

Preserves multiplication: First we note that z+(—xz) = 0 implies that f(z)+f(—x) =
F(0) =0, ic., f(~2) = —f(z)

Let x,y € R if either x or y is zero we clearly have f(xy) = f(0) =0 = f(z)- f(y).
So we first assume that x,y > 0 and let A = Q N [z,00[ and B = Q N [y, 00[. We
now define

a5={t"cqllcancnl.
qn q n

If a and b are lower bounds for A and B, respectively then ab is a lower bound for.
A - B using this is not hard to see that zy = inf A - inf B = inf(A - B) and

f(xy):inff(A-B):mf{?-Te@‘?eAA@eB}
q n q n
:inf{]—)-meQ
q n

—inf{]—oe(@
q

P m
xS—AyS—}
q n

p . m m
xs—}qﬁ{—e@@s—}—f@»ﬂw.
q n n
We still miss the cases where one or both numbers are negative. We have

f((=2)y) = f(—ay) = = f(zy) = —f(2) - fly) = f(=2)- fy).

Similar
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Before we give a construction of the real numbers we show a perhaps surprising
consequence of the nested interval theorem. We have seen that the rational numbers
are dense in the real numbers. But in a sense that will be made precise below there
are extremely more real numbers that rational numbers. We can count the rational
numbers but not the real numbers.

Definition A.15. A set A is called countable if it is finite or there exists a bijective
map N — A. Otherwise A is called uncountable

Clearly N is countable. We define a bijective map f : N — Z by

R if n is even
n) =
/() {17”, if n is odd,
so Z is countable. The sequence f(1),f(2),--- is 0,1,—-1,2,—2,3,---. But also
7. x 7 is countable, see Figure A.1 left, where we visit each point of Z x Z exactly
1
? - o X
¢ YX—eo—X o ¢
¢ ® ¢
*—b X % x—
p p
[ ] X X
® ® A & ® ® HK—r—x——>¢—X

Figure A.1: Spiralling around we visit all points of Z x Z exactly once. Skipping
some points and considering § we visit all points of QQ exactly once.

once, i.e., we have a sequence (py, ¢,) € ZxZ such that ZxZ = {(pn, ¢») | n € N and
n#m = (Pn,qn) # (Pm,qm)- By skipping all points with ¢, < 0 and considering
Z—: we get a surjective map N — @Q and by skipping numbers we already have we
get a bijective map, i.e., Q is countable, see Figure A.1 right. The first few rational
numbers are 1,0, —1, 2, %, —%, -2,3, %, §7 %, —%, s

We have just seen that Q is countable and now we will show that R is uncount-
able.

Theorem A.16. The real numbers are uncountable.

Proof. Assume we have a bijective map N — R : n — z,,. We can find an interval
[a1,b1] with a; < by such that z; ¢ [a1,b1], e.g. a1 = 21+ 1 and by = x1 +2. We now
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recursively want to find nested intervals [a,, b,] C [a,_1,b,_1] such that x, ¢ [a,, b,]

and b, —a, = bl;—,j“
Assume we have found [a,,b,] C [an—1,b,-1] C -+ C [ay,by], such that a, ¢
[ag, bx] and by — ay, = bl?;f” for k =1,...,n. Now consider the points ¢ = bﬁ% and

d = 22t They divide the interval [a,, b, into three parts [a,, c, [c,d], and [d, b,]
with length b“%“” The number x,,; cannot be an element of all three intervals so
we can pick one of them that does not contain z,,1. Call it [a,11,bn11]. We now
have that [ap11,0n11] C [an, by, that z,11 & [ant1,buta], and that b,y — apy =
b"% = bgn_—ff as required.

As b, —a, = ”13_% — 0 for n — o0o. The nested interval theorem tells us
that there exists a number 2 € R such that (,cy[an,bn] = {z}. Now x € [ay, b,]
and x, ¢ lan,b,] so x # x, for all n € N and that contradicts that the map

N — R : n — x, is surjective. O

A.3 A construction of the real numbers

There are more than one way to construct the real numbers, i.e., an ordered field
where every non empty set bounded from below has an infimum. But Theorem A.14
shows that they all yield the same result.

The starting point for the approach we present is Corollary A.13, where we saw
that in the end we must have z = inf(]z, 0o[NQ) , or equivalent = = sup(]—o0, z]NQ) ,
If A C Q is a subset of the rational numbers then the complement is AL=0Q \ A.
Observe that (]2, 00[NQ)¢ =] — 0o, 2] N Q. Halflines in Q, like A =]z, c0[NQ, have
the following properties

A#0D, (A.25)

A is bounded from below , (A.26)
Ve AVyeQ:2<y — yeA, (A.27)
Ve Adye Ay <. (A.28)

Remark A.17. Condition (A.28) says that A does not have a minimum. In particular,
if x € Q then A = [z, 00[NQ C Q does not satisfies the condition.

Lemma A.18. If A satisfies Condition (A.27) and a € A® then a is a lower bound
for A.

Proof. Assume a € A% and there exist # € A such that = < a then (A.27) says that
a € A, a contradiction. O

Conversely,

Lemma A.19. If A satisfies Condition (A.28) and a is a lower bound for A then
ae AL
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Proof. Assume a is a lower bound for A then Condition (A.28) tells us that a ¢
A. O

All in all we have

Lemma A.20. If A satisfies Condition (A.27) and (A.28) then A® is the set of

lower bounds for A.
This inspires the following definition of the real numbers as a set.

Definition A.21. The set of real numbers is

R = {A C Q| A satisfies Condition (A.25), (A.26), (A.27), and (A.28)}

We now have to equip this space with an addition, a multiplication, and an
ordering such that all the axioms of an ordered field is satisfied. If |x, co[ and |y, o]
are half lines then we have |z, 00[D]y, 00| if and only if x < y. So we define the
ordering by

Definition A.22. Let A, B € R we say that A < Bif A D B.

We need to show that this defines a total ordering on R, i.e., that it is reflexive,
antisymmetric, transitive, and total, see Definition 1.1.

Lemma A.23. Definition A.22 defines a total ordering on R.
Proof. Left as Exercise A.2 and A.3. O
Recall that if A, B C Q are arbitrary sets then
A+B={r+ycQ|zec ANy e B}.
We will use this as the definition of addition in R, but first we need
Lemma A.24. I[f A, B € R then A+ B € R.

Proof. Assume A,B € R. As A, B # () there exists (z,y) € A x B and then
r4+y €A+ Bso A+ B#0. So (A.25) is satisfied.

As A and B are bounded from below we can find a,b € Q such that a < x for
allz € Aand b <y for all y € B but then a +b <z +y for all (z,y) € A x B, i.e.,
A + B is bounded from below by a + b. So (A.26) is satisfied.

Suppose (z,y) € Ax B, z€Qandx+y <z Thenz < z—yand as A € R we
have z —y € A and hence z = (2 —y) +y € A+ B. So (A.27) is satisfied.

Suppose ¢ ¢ A+ B. We have just shown that A + B satisfies (A.27) so ¢ is a
lower bound for A + B. If ¢ =  + y where (z,y) € A x B then x must be a lower
bound for A and hence a minimum for A but that contradicts Condition (A.28). So
A + B satisfies Condition (A.28). O
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Definition A.25. Addition R x R — R is defined by
A+B={r+ycQ|zec ANy e B}.

Lemma A .24 says that addition is well defined, but we still need to show that it
satisfies Condition 1, 2, 4, and 5 in |1, Definition 6.1] and that it is compatible with
the ordering (Condition (1.5) in Definition 1.1).

Lemma A.26. Addition satisfies the commutative law and the associative law,

A+B=B+ A, (A+B)+C=A+(B+C).

Proof. Left as Exercise A.4 and A.5. O]
Lemma A.27. The set O = {x € Q | 0 < x} is a neutral element for addition in
R.

Proof. Left as Exercise A.G. O

Lemma A.28. Let Ac R and X = {—x | x € A}. Then

A {(X \ {max X}¢, if X has a mazimum,

Xt , otherwise,

is an additive inverse for A.

Proof. Left as Exercise A.7. n
Lemma A.29. Addition in R is compatible with the ordering.

Proof. Left as Exercise A.S8. O]
Lemma A.30. Let Ac R then A<O <— O0< -4

Proof. Left as Exercise A.9. O

Multiplication is a bit harder to define. Observe that if we for subsets A, B C Q
put
AoOB={zyecQ|zec ANy € b}, (A.29)

and have a,b € Q4 then
Ja,00[®]b, 00[=]ab, 00, ] —a,00[©]b, 00[=] — 00, o]
Definition A.31. The non negative real numbers are
Ry={AeR|O < A}. (A.30)
The positive real numbers are
R, ={AeR|0O< A}. (A.31)
The negative real numbers are

R ={AecR|A<O}. (A.32)
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Lemma A.32. We have the following characterisations

Ry ={A € R| A is bounded from below by 0} = {A € R|0¢ A}, (A.33)
R, ={A € R| A is bounded from below by a positive number} (A.34)
R_={A e R| A contains a negative numbery = {A € R |0 € A}. (A.35)

Proof. Left as Exercise A.10. m
Lemma A.33. If A,B € Ry then A® B € R,

Proof. We have A, B # () so there exists © € A and y € B then 2y € A® B. So
A® B # () and (A.25) is satisfied.

If r € Aand y € B then z,y > 0 hence zy > 0 and we see that A® B is bounded
from below by 0. So (A.26) is satisfied.

IfxEA,yEB,zEQ,and0<xy§zthen1§ﬁ. Hencexﬁxﬁzgso
2c€Aand z =2y € A® B. So (A.27) is satisfied.

If x € Aand y € B then we can find 2’ € A such that 2’ < x. This implies that
'y € A® B satisfies 'y < xy. So (A.28) is satisfied.

Finally, 0 is a lower bound for both A and B. Soif z,y € A X B then 0 < z,y
and hence 0 < zy, i.e., 0 is lower bound for A® B and A ® B € R,. n

Definition A.34. Multiplication R x R — R is defined by

A®G B, if A,B € Ry xRy,
—(-A®B), if A,BeR_ xRy,
—(A®-B), ifA L BeRyxR_,
—-A®-B, A BeR_xR_.

A-B= (A.36)

It follows from Lemma A.33 that this is well defined. The details are left as
Exercise A.11.

We still need to show that it satisfies Condition 1, 2, 3, 4, and 6 in |1, Defi-
nition 6.1] and that it is compatible with the ordering (Condition (1.5) in Defini-
tion 1.1)

Lemma A.35. Multiplication satisfies the commutative law and the associative law,

A-B=B-A, (A-B)-C=A-(B-C).

Proof. Left as Exercise A.12 and A.13. m
Lemma A.36. The set I ={x € Q|1 < z} is a neutral element for multiplication
mn R.

Proof. Left as Exercise A.14. O
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Lemma A.37. Let A € R if A# O then

P {tlz e A}, AeRy,
_(_A)ila AER—»

is a multiplicative inverse for A.

Proof. Left as Exercise A.15. m
Lemma A.38. Multiplication in R is compatible with the ordering.

Proof. Left as Exercise A.16. O

We now have that (R, +, -, <) is an ordered field. All that is left is to prove that
it satisfies the nested interval theorem or equivalently that every subset bounded
from below has an infimum. This is surprisingly easy.

Lemma A.39. Let A C R be non empty and bounded from below. Then

infA=[JA. (A.37)

AeA

Proof. We need to show that |, 4 A satisfies the Conditions (A.25) , (A.26), (A.27),
and (A.28). That it is a lower bound for A, i.e., that (J,. 4 A < A for all A € A,
and finally if (J,.4 A < B for some B € R and B is a lower bound for A then
B =J e A- This is left as Exercise A.17, A.18 and A.19. O]

This proves

Theorem A.40. The real numbers R satisfies one and hence all three properties in
Theorem A.11.

Lemma A.41. The map f: Q — R by f(z) =]z, oo[ preserves addition, multipli-
cation, and the ordering and f(1) is the identity in R. That is, it makes Q into a

subfield of R.

Proof. That f(1) is the identity is obvious. We need to show that f(z + y) =

flz)+ fly), f(zy) = f(z) - f(y), and that x <y = f(x) < f(y). This is left as
Exercise A.20, A.21, and A.22. O]

If we identify Q with its image in R then Lemma A.12 tells us that Q is dense
in R: Between any two distinct real numbers is a rational number. At this point we
can stop thinking about the real numbers as halflines in QQ and just think of them as
introducing new irrational numbers so as to “plug all holes in Q”. Rational numbers
have a decimal expansion that are periodically, e.g. % = 223123123 --- and now
we introduce numbers with arbitrary decimal expansions. e.g. m = 3.14159265- - - .
By truncating the decimal expansion we obtain a rational approximation to a given
real number and inside a computer that is normally all we have. So what is the
point of all this? The point is that we now know that R has the nested interval
property. That can only be proved rigorously if we have a precise definition of R.
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A.4 Exercises

Exercise A.1. Prove that the map f : Z — F in Lemma A.1 is injective. Hint: Use
that f preserves the ordering.

Exercise A.2. Show that that Definition A.22, (A < B <= A D B) defines an
ordering on R, i.e., it is

o Reflexive: A < A for all A € R.
e Antisymmetric: A< BAB< A= A=Bforall A, BeR.
e Transitive: AK BAB<(C=A<C(Cforall A B,C eR.

Exercise A.3. Show the ordering on R is total, i.e., for all A, B € R we have A < B
and/or B < A.

Exercise A.4. Show that additionin R (A+B ={x+y |z € ANy € B}) is
commutative, i.e., A+ B= B+ Aforall A,B €R

Exercise A.5. Show that addition in R is associative, i.e., (A+B)+C = A+(B+C)
for all A, B,C € R.

Exercise A.6. Show that O = {z € Q| 0 < z} is a neutral element for addition in
R.

Exercise A.7. Show that if A€ R and X = {—xz |z € A}. Then

A (X \ max X)®, if X has a maximum,
] xC , otherwise ,
is an additive inverse for A. You need to show that —A € R and that A+(—A) = O.

Exercise A.8. Show that addition in R is compatible with the ordering, i.e., A <
B=A+C<B+Cforal A B,C €R.

Exercise A.9. Show that A< O «<— O< —-Aforall AeR.
Exercise A.10. Show that

Ry ={A € R| A is bounded from below by 0} = {A€R |0 ¢ A},
R, = {A € R| A is bounded from below by a positive number} ,
R_ ={A € R| A contains a negative number} = {A € R |0 € A}.

Exercise A.11. Using Lemma A.33 show that multiplication R x R — R (Defini-
tion A.34) is well defined, i.e., that if A, B € R then A- B € R.

Exercise A.12. Show that multiplication R x R — R is commutative, i.e., that
A-B=B-Aforall A, BeR.
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Exercise A.13. . Show that multiplication R x R — R is associative, i.e., that
(A-B)-C=A-(B-C)forall A,B,C €R.

Exercise A.14. Show that I = {x € Q | 1 < z} is a neutral element for multipli-
cation in R.

Exercise A.15. Show that if A € R if A # O then

. {ilze A}, AeR,,
_<_A)_17 A€ R_,

is a multiplicative inverse for A.

Exercise A.16. Show that multiplication in R is compatible with the ordering, i.e.,
fA<Band O <(Cthen A-C<B-C.

Exercise A.17. Show that if A C R is non empty and bounded from below then
Usca A €ER.

Exercise A.18. Show that if A C R is non empty and bounded from below then
Uaca A is a lower bound for A.

Exercise A.19. Let A C R be non empty and bounded from below. Show that if
B € R is a lower bound for A and |J,. 4 A < B then B = [J, 4 A

Exercise A.20. Let f : Q@ — R be defined by by f(z) =]z, co[. Show that f(z+y) =
f(z)+ f(x) for all z,y € Q.

Exercise A.21. Let f: Q — R be defined by by f(x) =]z, 0o[. Show that f(zy) =
f(z)- f(z) for all z,y € Q.

Exercise A.22. Let f: Q — R be defined by by f(z) =]z, co[. Show that z <y =
f(z) < fy).
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Appendix B

Properties of normed vector spaces

Let || - |2 be the usual euclidean norm on R, i.e, ||x|l2 = \/|z1]2 + - - + |2,]2.

Theorem B.1. If (x,,)men is a bounded sequence in R™ then it has a convergent
subsequence.

Proof. We use induction on the dimension n. The case n = 1 is Lemma 1.13.
So assume the lemma is true for some n € N and let ((2p.1,- .., Zmmnt1))men be a
bounded sequence in R™*!. Then ((Z,n.1, - - -, Zmn) Jmen 18 a bounded sequence in R™.
By the induction hypothesis we have convergent subsequence ((Zp,.1, - - - s Tmyn) ) ken-
The sequence (T, .n+1)ken is a bounded sequence in R and by Lemma 1.13 (case
n = 1) it has a convergent subsequence (Imkz;n+1)g€N. Now ((mmké;l, . ,I‘mke;n_i'_l))geN
is convergent in R"*1, O

Theorem B.2. If F' is a closed and bounded subset of R and f : F — R is a
continuous function then f attains its maximum and minimum. That is, there exist

a,b € F such that f(a) < f(x) < f(b) for allx € F.

Proof. Let ¢ = infep f(x) and choose a sequence (@, )men in F such that f(x,,) —
¢ form — oo. As f is bounded the sequence is bounded and by Theorem B.1 it has a
convergent subsequence (&,, Jren. Let @ = limy_,o @, as F' is closed we have a € F
and as f is continuous f(a) = limy_,o f(x,,) = c. Starting with d = sup,.p f(x) a
similar argument shows that there exists b € F' such that f(b) = d. O

Lemma B.3. Let ||-|| be a norm on R™. There exist C' € R such that ||x|| < C||z||2
for all x € R™.

Proof. Let ey, ...e, be the standard basis for R". If & = (z1,...,2,) then we have

n n n
Zaziei < Z |ziei|| = Z || e
i=1 i=1 i=1

n

< max [le;| Y Jaif < (n max |eil)]z]s. O
i=1,...,n i=1,...,n

=1

|| =

103 of 112



APPENDIX B. PROPERTIES OF NORMED VECTOR SPACES

Corollary B.4. An arbitrary norm || - || on R™ is a continuous function R" — R
w.r.t. the usual euclidean norm.

Proof. By Lemma B.3 we have ||| < C|x||s for some C € R. If &, — « for
n — oo then we have |||x,| — [|z]|| < ||z — x| < Cll —x,|]2 = 0 for n — o0, i.e.,
|len] = ||z|| for n — oo. O

Lemma B.5. Le S" ! = {x € R" | ||z||2 = 1} be the standard unit sphere in R™.
Then

sup ||lx| < o0, inf flz]| > 0.
xesSn—1 xesn

Proof. As S ! is bounded and closed Theorem B.2 give us a,b € S"! such that
la|| = infzegn-1 ||| and ||b]| = supgegn-1 |||]. We have ||b]| € R and as |lall; =1
we have a # 0 and hence ||a|| > 0. O

All norms on R"™ are equivalent:

Theorem B.6. Let || - || be a norm on R"™. There exist ¢,C > 0 such that c||x|]y <
||| < C||lx||2 for all x € R™.

Proof. The existence of C' is Lemma B.3. Let S"~! be the standard unit sphere in
R™ and put ¢ = inf cgn—1 ||2||. By Lemma B.5 we have ¢ > 0.

If € R" and 2 # 0 then Hﬁ > ¢ and

= 1. Hence Hi
9 ]2

xr
—H > cllell.. .
EP

xr
] = ] HwHQ—H _ izl
EP
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The trigonometric functions

The trigonometric functions are defined as the z and y coordinates of a point on the
unit circle, respectively, see Figure C.1 left. If we rotate the picture with the angle ¢

Y

Figure C.1: The definition of cosine and sine.

then we obtain the picture in Figure C.1 right. On one hand the point (cos 6, sin 6)
is clearly moved to the point (cos(6 + ¢),sin(f + ¢)). On the other hand, rotating
with the angle ¢ is a linear map with the matrix (gﬁf jj ;zisnf) . Applying this matrix
to the point (cosf,sinf) gives us

cos(0+ @)\ [cos¢p —sing) [cos@\  (cos¢cosf —singsinf
sin(f + ¢) ) \sing  cos¢ sinff ) \sin¢cosf + cosgsinf )’
and we have derived the addition identities for cosine and sine.
We now want to show that cos and sin are differentiable in § = 0. In Figure C.2

we have

BD in6
|AB| = cos®, |BD| = sin®, cp| = BPL _ sinf
cos cos 0

We have 0 < |BD| < |0 < |CD| for |f] < 7 and IBDI — ¢os# — 1 for @ — 0. This

ICD|
implies that \s|1;1|9| - lZT]'jl — 1 for # — 0. As sin0 = 0 this in turn proves that sin is

differentiable at 0 with derivative 1.
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D

Figure C.2: The length of the circle segment PD is 6 and |BD| < |0 < |CD] if
0] < 5.

We have |BC| = |CD|sinf = Scigsg SO ‘Becl = ‘S;gﬂ% —1-0=0for § — 0. As
|1 — cosf| < |BC| this implies that % — 0 for # — 0. As cos0 =1 this in turn
proves that cos is differentiable at 0 with derivative 0.

For an arbitrary # € R we now have

cos(6 + h) = cosfcosh —sinfsinh,
sin(f + h) = cos@sinh + sinf cos h .

We now have

dcos  dcos(f +h) ~ cos dcosh <in dsinh — sing
do |, dh |, |, ’
dsing  dsin(6 + h) — cos dsinh <in g dcosh — cosd
o - dh |, |,y ah |,
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The logarithm and exponential

One way of defining the natural logarithm, log : R, — R, is the following.

Definition D.1. For x > 0 we put

1
log(z) = / ;dt, x>0. (D.1)
1

The natural logarithm has the following basic properties:
Theorem D.2. The natural logarithm, log, satisfies

1. It s differentiable with derivative x — %

2. It is monotonically increasing, i.e., 0 < x <y = log(z) < log(y).

3. The image is R, i.e., log(R;) = R.

4. If x,y > 0 then log(xy) = log(x) + log(y).

Proof. 1. is the fundamental theorem of calculus (Theorem 2.61).

2. We integrate a positive function (2 > 0 for z > 0). So if 0 < < y then

log(y) —log(x) = [Y1dt >0, i.e., log(z) < log(y).
For 4. we let x,y > 0. The subbtltutlon t = xu shows that

Ty Y
/ 1dt —xdu—/ ldlL:log(y).

w1 “1 w1
log(zy) = / i dt = / n dt + / n dt = log(x) + log(y) .
1 1 T

Finally for 3. we note that for n € Z Property 4 yields log(2") = nlog(2) and as
log(2) > log(1) = 0 this implies that log(2") — oo for n — +oo. So the image is
all of R. -

We see that log : R, — R is bijective and hence has an inverse log™' : R — R,.
We can defined the exponential function as this inverse:
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Definition D.3. The exponential function exp : R — R, is exp = log™".
It has the following properties,
Theorem D.4. The exponential function exp : R — R, satisfies
1. It is differentiable with derivative exp.
2. It 1s monotonically increasing.
3. The image is R,..
4. For z,y € R we have exp(x + y) = exp(z) exp(y).

Proof. The last three properties follows immediately from the corresponding prop-
erties of log. So we only need to consider the first. If log(xz) = y then exp(y) = =
and by Theorem 2.40 exp is differentiable and the derivative is

—_

1
= gl = [ = =), =

exp'(y)

As log(1) = 0 we have exp(0) = 1 and as exp(x)exp(—z) = exp(x — ) =

exp(0) = 1 we have exp(—z) = Wl(x)‘ If n € N then exp(nz) = exp(z)" and
1 1

exp(—nz) = D = swEr = exp(z)™". We also have exp(z) = exp (niz) =

n

exp (%x)n SO exp (%x) = {/exp(x) = exp(:c)%. Combining this we see that exp <§x> =
exp(z)a for all p € Z and all ¢ € N.

Definition D.5. Fulers constant is the number exp(1) and is denoted e, i.e., e =
exp(1).

As log(e) = log(exp(1)) = 1 we can also define e by the condition [ 1d¢ = 1.
For p € Z and q € N we have exp <§> = exp(l)g = eq.

Ifa>0,p€Z and g € N then at = (exp(log(a)))s = exp (glog(a)) Using
the logarithm and the exponential we can define a” for any power x € R:
Definition D.6. If ¢ > 0 and z € R then a® = exp(xlog(a)). In particular
e” = exp(x).

We see that log(a®) = log(exp(zlog(a))) = zlog(a).

Definition D.7. If a > 0 then the logarithm with base a is defined as log, (z) = }Zigg
In particular log, = log.

We see that log,(a”) = z, i.e., the maps x — a” and log, are each other inverses.
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Exercises

Exercise D.1. Consider the proof of Theorem D.2. Why does log(2") — oo for
n — +oo implies that the image of log is all of R?

Exercise D.2. Prove the first three properties in Theorem D.4.

Exercise D.3. Let x € R. Use induction to prove that exp(azn) = exp(z)" for all
n € N.

Exercise D.4. Let x € R. Prove that exp <§m> = exp(m)g for all p € Z and all
q € N.

Exercise D.5. Let a > 0 and z € R. Use that a® = exp(xloga) to find the
derivative with respect to z, c.f. Example 2.19. Why is the function differentiable?

Exercise D.6. Let ¢ € R and # > 0. Use that 2* = exp(alogz) to find the
derivative with respect to z, c.f. Example 2.19. Why is the function differentiable?

Exercise D.7. Let # > 0. Use that 2 = exp(xzlogx) to find the derivative with
respect to x. Why is the function differentiable?
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Index

C' function, 25, 50

C* function, 25, 56

C* function, 25, 56

kth derivative, 25, 56

k times differentiable, 25, 56

addition identities, 105
anti derivative, 39
arc-length, 62

bounded from above, 10, 89
bounded from below, 11, 89
bounded sequence, 10, 103

Cauchy’s mean value theorem, 28

closed set, 15

closed surface, 80
complement, 95
continuous, 19, 20, 43

continuous at a point, 17, 18, 43
convergent subsequence, 10, 103

converges, 7
countable, 94
curl, 75
curve, 62

derivative, 23, 25
differentiable, 25, 47
differentiable at a point, 22
differential, 48

directional derivative, 49
divergence, 70

Divergence theorem, 75
divergent, 7

ellipse, 42
Eulers constant, 108
exponential function, 107

flux, 72

fundamental theorem of calculus, 39

Gauss theorem, 75
gradient, 68

half lines, 90
Hesse matrix, 60
Hessian, 60, 68
Hessian matrix, 60
hyperbola, 43

infimum, 11, 89

integers, 85

integral, 35

intersection, 14

inverse function theorem, 31

Jacobian matrix, 48, 68

Laplace operator, 71
Laplacian, 71

level set, 42, 68

limes inferior, 12
limes superior, 12
limit, 7, 23

linear form, 68

linear map, 48

line integral, 63

local maximum, 26, 61
local minimum, 26, 61
logarithm with base a, 108
lower bound, 11, 89
lower sum, 32

maximum, 89
mean value theorem, 26, 38
minimum, 89
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natural logarithm, 107 uncountable, 94

natural numbers, 85 uniformly continuous, 22
negative integers, 85 union, 14

negative real numbers, 97 upper bound, 10, 89
nested interval theorem, 6 upper sum, 32

non negative integers, 85

non negative real numbers, 97 vector field, 67

velocity, 62
open set, 14, 47
ordered field, 5, 6

ordering, 6

parabola, 43
parametrisation, 62, 66
partial derivatives, 50
polynomial, 26

positive integers, 85
positive real numbers, 97

quadratic form, 41
quadratic function, 49

rational numbers, 85
refinement, 32
regular curve, 63
regular surface, 66
relative closed, 15
relative open, 14
Riemann sum, 35
Rolle’s theorem, 26

saddle point, 62

sequence, 6

speed, 62

Stokes theorem, 75, 76, 79
subsequence, 6
substitution, 40
supremum, 11, 89

surface, 66

tangent, 23, 63

Taylor’s theorem, 29, 60

Taylor’s theorem with reminder, 30, 60
Taylor polynomial, 29

total ordering, 5, 6
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