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Chapter 1

The real numbers

You only need to read this chapter if you want rigorous proof for important theorems
about continuous functions. A crucial property of the real numbers is the nested
interval theorem (Theorem 1.2).

In Appendix A we prove that the real numbers is the only ordered field (see
below) that has this property and we also present a construction (or definition) of
the real numbers and prove that the nested interval theorem is valid. You do not
need the read the appendix and can just take the nested interval theorem as an
axiom for the real numbers

1.1 Nested interval theorem

In [1] we had the definition of a field, i.e., we have a set F with an addition “+”
and a multiplication “·” such that the associative, commutative, and distributive
laws hold, there exists distinct neutral elements 0 ∈ F and 1 ∈ F for addition and
multiplication, respectively, all elements have an additive inverse and all non zero
elements have a multiplicative inverse.

The rational numbers Q, the real numbers R, and the complex numbers C are
all examples of fields and the only ones we will need. In Q and R we furthermore
have an ordering “≤”. Given two numbers one of them is smaller than or equal to
the other. This ordering makes Q and R into an ordered field:

Definition 1.1. A field (F,+, ·) is an ordered fields if it is equipped with a total
ordering compatible with addition and multiplication, i.e., a relation “≤” such that

∀a ∈ F : a ≤ a , reflexive (1.1)
∀a, b ∈ F : a ≤ b ∧ b ≤ a =⇒ a = b , antisymmetric (1.2)

∀a, b, c ∈ F : a ≤ b ∧ b ≤ c =⇒ a ≤ c , transitive (1.3)
∀a, b ∈ F : a ≤ b ∨ b ≤ a , total (1.4)
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CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

compatible with addition and multiplication:

∀a, b, c ∈ F : a ≤ b =⇒ a+ c ≤ b+ c , (1.5)
∀a, b, c ∈ F : a ≤ b ∧ 0 ≤ c =⇒ a · c ≤ b · c . (1.6)

Conditions (1.1), (1.2), and (1.3) is the the definition of an ordering . Together
with condition (1.4) we have the definition of a total ordering . Finally, adding the
two compatibility conditions (1.5) and (1.6) we have the definition of an ordered
field .

Both Q and R with the usual definition of ≤ satisfies these axioms. But there
are many more examples of ordered fields.

The following statement about the real numbers gives a precise meaning to the
phrase that “there are no “holes” in the real axis”.

Figure 1.1: Nested intervals.

Theorem 1.2 (Nested interval theorem). If we have a nested sequence of closed
intervals [a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [an, bn] ⊇ . . . in R such that bn − an → 0 for
n → ∞. Then their intersection consists of a single number, i.e., there exists x ∈ R
such that

⋂
n∈N[an, bn] = {x}, see Figure 1.1.

We will take this theorem as an axiom for the real numbers, but in Appendix A
we give a construction of R and prove the theorem. We also show that it is the only
ordered field with this property.

The precise meaning of “bn − an → 0 for n → ∞” will be given in Definition 1.3
below.

1.2 Sequences
A sequence of real numbers is simply a map F : N → R, but if let xn = F (n) then
we will write x1, x2, x3, . . . , xn, . . . or more compactly (xn)n∈N.

If (nk)k∈N is strictly increasing sequence in N, i.e., nk ∈ N and k > ℓ ⇒ nk > nℓ,
then we call (xnk

)k∈N a subsequence of (xn)n∈N. If we think of the sequence as an
infinite row of numbers then we simply remove some of the numbers.
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CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

Example 1.1. The sequence (n2)n∈N is a subsequence of (n)n∈N, (nk = k2):

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, · · · , 24, 25, · · · .

If k, ℓ ∈ N then k, ℓ > 0 and multiplying with k and ℓ shows that k ≤ ℓ ⇒ k2 ≤
kℓ ∧ kℓ ≤ ℓ2 ⇒ k2 ≤ ℓ2.

If xn approaches a specific value as n gets bigger and bigger we say the sequence
converges. More precisely

Definition 1.3. Let (xn)n∈N be a sequence in R, i.e., a map N → R : n 7→ xn. We
say that it converges to x ∈ R and write xn → x for n → ∞ if

∀ϵ > 0∃n0 ∈ N : ∀n ∈ N : n > n0 =⇒ |xn − x| < ϵ . (1.7)

The number x is called the limit of the sequence and we write x = lim
n→∞

xn.

Example 1.2. The sequence
(
1
n

)
n∈N is convergent with limit 0. Indeed, given ϵ > 0

we can find n0 ∈ N such that n0 > 1
ϵ
. For n ∈ N we now have that n > n0 ⇒ n >

1
ϵ
⇒ 1

n
< ϵ. For the first implication we used that the ordering is transitive and for

the second we use that the ordering is compatible with multiplication (we multiply
with ϵ

n
> 0 on both sides of the inequality).

If a sequence is convergent then the limit is unique:

Theorem 1.4. Let (xn)n∈N be a sequence in R. If x, x′ ∈ R, xn → x for n → ∞,
and xn → x′, for n → ∞ then x = x′.

Proof. Given ϵ > 0. Choose n0 ∈ N such that n > n0 ⇒ |xn − x| < ϵ/2 and
n1 ∈ N such that n > n1 ⇒ |xn − x′| < ϵ/2. If n > max{n0, n1} then we have
|x−x′| = |x−xn+xn−x′| ≤ |x−xn|+ |xn−x′| < ϵ/2+ ϵ/2 = ϵ. As ϵ was arbitrary
we must have x = x′.

If a sequence does not converges then it is called divergent . If a sequence grows
or decreases without bounds it is divergent, but we say that xn tends to infinity and
write xn → ∞ for n → ∞ or lim

n→∞
xn = ∞ if

∀c ∈ R∃n0 ∈ N : ∀n ∈ N : n > n0 =⇒ xn > c . (1.8)

Likewise, we say xn tends to minus infinity and we write xn → −∞ for n → ∞ or
lim
n→∞

xn = −∞ if

∀c ∈ R∃n0 ∈ N : ∀n ∈ N : n > n0 =⇒ xn < c . (1.9)

Example 1.3. The sequence (n)n∈N is divergent, but tends to infinity. Indeed, given
C ∈ R we can find n0 ∈ N such that n0 > C. Let n ∈ N, if n > n0 then n > C (the
transitive rule).

A subsequence of a convergent sequence is convergent with the same limit:
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Lemma 1.5. If (xn)n∈N is a convergent sequence. Then a subsequence (xnk
)k∈N is

convergent too with the same limit, i.e., limk→∞ xnk
= limn→∞ xn.

Proof. If x = limn→∞ xn ∈ R and ϵ > 0 then we can find n0 such that n > n0 ⇒
|xn−x| < ϵ. As (nk)k∈N is increasing we have k > n0 ⇒ nk > n0 ⇒ |xnk

−x| < ϵ.

Example 1.4. As the sequence ( 1
n2 )n∈N is a subsequence of ( 1

n
)n∈N and the latter is

convergent with limit 0 we have 1
n2 → 0 for n → ∞.

The same is true if (xn)n∈N tends to plus or minus infinity:

Lemma 1.6. If limk→∞(xn)n∈N tend to plus or minus infinity. Then a subsequence
(xnk

)k∈N does too.

Proof. If limn→∞ = ∞ and C ∈ R is given then we can find n0 such that n > n0 ⇒
xn > C. Again we have k > n0 ⇒ nk > n0 ⇒ xnk

> C. The case limn→∞ = −∞ is
similar.

Example 1.5. As the sequence (n2)n∈N is a subsequence of (n)n∈N and the latter
tends to infinity we have n2 → ∞ for n → ∞.

Limits preserve inequalities:

Lemma 1.7. If (xn)n∈N is a convergent sequence, c ∈ R, and xn ≤ c for all n ∈ N
then limn→∞ xn ≤ c.

Proof. Assume the opposite: limn→∞ xn > c. Then we can find ϵ > 0 such that
c + ϵ < limn→∞ xn. We can now find n0 ∈ N such that n > n0 ⇒ xn > c + ϵ > c,
but that contradicts xn ≤ c.

Remark 1.8. Limits do not preserves strict inequalities. Indeed, if xn = 1
n

then
xn > 0, but limn→∞ xn = 0.

If (xn)n∈N and (yn)n∈N are two sequences then we can add them and form a new
sequence (xn+yn)n∈N. we can also multiply the sequence (xn)n∈N by a number c ∈ R
and form the sequence (cxn)n∈N. These two operations turn the space of sequences
into a vector space.

We can also multiply two sequences (xn)n∈N and (yn)n∈N and form a new sequence
(xnyn)n∈N. If xn ̸= 0 for all n ∈ N then we can form the new sequence

(
1
xn

)
n∈N

. All
these operation preserves convergence:

Theorem 1.9. Let (xn)n∈N and (yn)n∈N be two convergent sequences. Then (xn +
yn)n∈N and (xnyn)n∈N are convergent with limits

lim
n→∞

(xn + yn) = lim
n→∞

(xn) + lim
n→∞

(yn) , (1.10)

lim
n→∞

(xnyn) = lim
n→∞

(xn) lim
n→∞

(yn) . (1.11)

date/time: January 15, 2024/20:45 8 of 112



CHAPTER 1. THE REAL NUMBERS 1.2. SEQUENCES

If xn ̸= 0 for all n ∈ N and lim
n→∞

(xn) ̸= 0. Then
(

1
xn

)
n∈N

is convergent and

lim
n→∞

(
1

xn

)
n∈N

=
1

lim
n→∞

(xn)
. (1.12)

Proof. Let x = limn→∞ xn and y = limn→∞ yn, and let ϵ > 0 be given .
(1.10): As xn → x we can find n1 ∈ N such that n > n1 ⇒ |xn − x| < ϵ

2
. Similar we

can find n2 ∈ N such that n > n2 ⇒ |yn − y| < ϵ
2
. If we put n0 = max{n1, n2} and

n > n0 then

|xn + yn − x− y| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y| < ϵ

2
+

ϵ

2
= ϵ .

(1.11): As xn → x we can find n1 ∈ N such that n > n1 ⇒ |xn−x| < ϵ
2|y|+2

. Similar
we can find n2 ∈ N such that n > n2 ⇒ |yn − y| < ϵ

2|x|+2
and we can find n3 ∈ N

such that n > n3 ⇒ |yn| < |y|+ 1. If we put n0 = max{n1, n2, n3} and n > n0 then

|xnyn − xy| = |xnyn − xyn + xyn − xy| ≤ |xnyn − xyn|+ |xyn − xy|

= |xn − x||yn|+ |x||yn − y| < ϵ

2|y|+ 2
(|y|+ 1) +

ϵ

2|x|+ 2
|x| ≤ ϵ

2
+

ϵ

2
= ϵ .

(1.12): As xn → x and x ̸= 0 we can find n1 ∈ N such that n > n1 ⇒ |xn−x| < ϵ|x2|
2

and we can find n2 ∈ N such that n > n2 ⇒ |xn| > |x|
2

. If we put n0 = max{n1, n2}
and n > n0 then∣∣∣∣ 1xn

− 1

x

∣∣∣∣ = |x− xn|
|xxn|

<
|x− xn|
|xx

2
|

=
2|x− xn|

|x2|
<

2

|x2|
ϵ|x2|
2

= ϵ .

Corollary 1.10. If xn → x ∈ R for n → ∞ and c ∈ R then cxn → cx for n → ∞.

Proof. Letting yn = c this follows from Theorem 1.9 (1.11).

Remark 1.11. This shows that convergent sequences is a subspace of the vector space
of sequences. Furthermore, mapping a convergent sequence to its limit is a linear
map.
Example 1.6. As 1

n
→ 0 for n → ∞ and 1

n2 = 1
n
· 1
n

this gives us a new proof that
1
n2 → 0 for n → ∞. Using induction it is not hard to show that for any k ∈ N we
have 1

nk → 0 for n → ∞.

Corollary 1.12. If xn ≤ yn for all n ∈ N, xn → x ∈ R and yn → x ∈ R for n → ∞
then x ≤ y.

Proof. We have xn − yn ≤ 0 so by Lemma 1.7 x− y ≤ 0, i.e, x ≤ y.

The nested interval theorem implies that a bounded sequence has a convergent
subsequence.
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Theorem 1.13. A bounded sequence of real numbers has a convergent subsequence.

Proof. Let (xn)n∈N be a bounded sequence in R, i.e., we have a1, b1 ∈ R such that
xn ∈ [a1, b1] for all n ∈ N. We now look at the midpoint c = a+b

2
. If there are

infinitely many elements of the sequence in the interval [a1, c] then we put a2 = a1
and b2 = c. Otherwise we must have infinitely many elements of the sequence in
the interval [c, b1] and then we put a2 = c and b2 = b1. Continuing this way, halving
the intervals and picking a half with infinitely many elements from the sequence,
we obtain for each n ∈ N an interval [an, bn] with infinitely many elements from the
sequence and with length bn − an = b−a

2n
→ 0 for n → ∞. Theorem 1.2 now tells us

that there is an x ∈ R such that
⋂

n∈N[an, bn] = {x}.
We now let n1 = 1 and recursively pick nk+1 > nk such that xnk

∈ [ak, bk]:
Clearly xn1 = x1 ∈ [a1, b1]. Now suppose we have 1 = n1 < n2 < · · · < nk such that
xnk

∈ [ak, bk] and consider the interval [ak+1, bk+1] we have infinitely many elements
from the sequence in this interval. So {n ∈ N | xn ∈ [ak+1, bk+1]} \ {1, 2, . . . , nk}
is non empty and hence contain an element nk+1 we clearly have nk+1 > nk and
xnk+1

∈ [ak=1, bk+1].
We have x, xnk

∈ [ak, bk] so |xnk
− x| ≤ bk − ak → 0 for k → ∞. Thus xnk

→ x
for k → ∞ and we have found a convergent subsequence.

A sequence can have many convergent subsequences with different limits.

Example 1.7. Consider the sequence in Z × Z depicted in Figure A.1 left. Let
(pn, qn)n∈N be the subsequence where the points with q = 0 are skipped, i.e., we
have Z × (Z \ {0}) = {(pn, qn) | n ∈ N}. Now consider the sequence (pn

qn
)n∈N in Q.

We have all possible numerators and denominators so we have Q = {pn
qn

| n ∈ N}.
Furthermore, as pn

qn
= kpn

kqn
all rational numbers appears infinitely many times in the

sequence. So for any rational number p
q
∈ Q we can find a subsequence (

pnk

qnk
)k∈N

such that pnk

qnk
= p

q
for all k ∈ N. We have pnk

qnk
→ p

q
for k → ∞. In other words, any

rational number is the limit of a (constant) subsequence of (pn
qn
)n∈N. In Exercise 1.6

you will be asked to show that any real number is the limit of a subsequence of
(pn
qn
)n∈N.

1.3 Supremum and infimum
The intervals [a, b] and ]a, b] have a maximal element namely b. In contrast the
intervals [a, b[ and ]a, b[ do not have a maximal element, still the number b seems
to play a similar role. Likewise the intervals [a, b] and [a, b[ have a minimal element
namely a while the intervals ]a, b[ and ]a, b] do not have a minimal element, here the
number a seems to play a similar role. If we have an arbitrary subset A ⊆ R the
situation is perhaps not so obvious.

Definition 1.14. Let A ⊆ R. If there exist a number c ∈ R such that x ≤ c for
all x ∈ A then we say that A is bounded from above and we call c an upper bound .
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If there exist a number c ∈ R such that x ≥ c for all x ∈ A then we say that A is
bounded from below and we call c a lower bound .

If c is an upper bound for a set A then all larger numbers are also upper bounds
for A. So we see that the set of upper bounds is an interval. It follows from
Theorem 1.2 that the set of upper bounds has a minimal element:

Theorem 1.15. If A ⊆ R is non empty and bounded from above then there exists a
least upper bound called the supremum, i.e., the set of upper bounds has a minimum.
We write

supA = min{c ∈ R | ∀x ∈ A : x ≤ c} . (1.13)

Similar, if A is bounded from below then there is a largest lower bound called the
infimum. We write

inf A = max{c ∈ R | ∀x ∈ A : x ≥ c} . (1.14)

Proof. Let Aupp = {c ∈ R | ∀x ∈ A : x ≤ c} be the set of upper bounds. Both A and
Aupp are assumed to be non empty so we can pick a ∈ A and b ∈ Aupp. If a = b then
maxA = a = b = minAupp and we are done. Otherwise we look at the midpoint
a1+b1

2
. If it is an upper bound for A then we put a1 = a and b1 =

a+b
2

otherwise we
pick a1 ∈ A such that a1 ≥ a+b

2
and put b1 = b. We now have a1 ∈ A, b1 ∈ Aupp,

and b1 − a1 ≤ b−a
2

. Continuing this way we either arrive at numbers an ∈ A
and bn ∈ Aupp, where an = bn and we are done. Otherwise we obtain sequences
aa ≤ a2 ≤ · · · ≤ an ≤ . . . and b1 ≥ b2 ≥ · · · ≥ bn ≥ . . . , where bn − an ≤ b−a

2n
→ 0

for n → ∞. By Theorem 1.2 we have
⋂

n∈N[an, bn] = {x0} for some x0 ∈ R. We
have bn → x0 for n → ∞ so x0 is an upper bound for A. Conversely, an → x0 for
n → ∞ so there are no smaller upper bound. Thus x0 = minAupp.

The case of the infimum can be proved in the same manner. Or we can note that
inf A = − sup(−A) = − sup{−x | x ∈ A}.

Remark 1.16. If there no upper bound then we write supA = ∞ and if there is no
lower bound we write inf A = −∞.
Remark 1.17. If A ̸= ∅ then inf A ≤ supA. But the set of lower or upper bounds
for ∅ is R so inf ∅ = ∞ and sup ∅ = −∞.
Example 1.8.

inf]a, b[= inf[a, b] = a , sup]a, b[= sup[a, b] = b ,

inf N = 1 , supN = ∞ ,

inf Z = −∞ , supZ = ∞ ,

inf
{

1
n

∣∣x > 1
}
= 0 , sup

{
1
x

∣∣x > 1
}
= 1 ,

If f : A → R is a function then we often use the notation

sup f = sup
x∈A

f(x) = sup{f(x) | x ∈ A} ,

inf f = inf
x∈A

f(x) = inf{f(x) | x ∈ A} .
(1.15)
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Example 1.9. infx>1
1
x
= 0 and supx>1

1
x
= 1

In particular for a sequence (xn)n∈N in R we have the notation

sup (xn)n∈N = sup
n∈N

xn = sup{xn | n ∈ N} ,

inf (xn)n∈N = inf
n∈N

xn = inf{xn | n ∈ N} .
(1.16)

Example 1.10. infn∈N
1
n
= 0 and supn∈N

1
n
= 1

Observe that if A ⊆ B ⊆ R then an upper bound for B is also an upper bound
for A. So supB is an upper bound for A and hence we must have supA ≤ supB.
Likewise inf A ≥ inf B.

1.3.1 Limes inferior and limes superior

If (xn)n∈N is a sequence in R then we have

{xn | n ∈ N} ⊇ {xn | n ≥ 2} ⊇ · · · ⊇ {xn | n ≥ k} ⊇ · · · .

Hence
sup
n∈N

xn ≥ sup
n≥2

xn ≥ · · · ≥ sup
n≥k

xn ≥ sup
n≥k+1

xn ≥ · · · .

and
inf
n∈N

xn ≤ inf
n≥2

xn ≤ · · · ≤ inf
n≥k

xn ≤ inf
n≥k+1

xn ≤ · · · .

This gives rise to the following definition

Definition 1.18. Let (xn)n∈N be sequence in R. Limes inferior and limes superior
is defined by

lim inf xn = lim
k→∞

inf
n≥k

xn = sup
k∈N

inf
n≥k

xn , (1.17)

lim supxn = lim
k→∞

sup
n≥k

xn = inf
k∈N

sup
n≥k

xn . (1.18)

Remark 1.19. Observe that we have lim inf xn ≤ lim supxn and

inf
n≥k

xn ↗
k→∞

lim inf xn , sup
n≥k

xn ↘
k→∞

lim supxn .

Example 1.11.

lim inf n = ∞ , lim supn = ∞ ,

lim inf
1

n
= 0 , lim sup

1

n
= 0 ,

lim inf(−1)n +
1

n
= −1 , lim sup(−1)n +

1

n
= 1 ,
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Lemma 1.20. A sequence (xn)n∈N in R is bounded from below if and only if lim inf xn >
−∞. It is bounded from above if and only if lim supxn < ∞.

Proof. If we have a c ∈ R such that xn ≥ c for all n ∈ N then infn≥k xn ≥ c
for all k ∈ N and hence lim inf xn ≥ c > −∞. Conversely, if lim inf xn > −∞
then there exist a k ∈ N such that infn≥k xn > lim inf xn − 1. If we put c =
min{x1, x2, . . . , xk−1, infn≥k xn − 1} then xn ≥ c for all n ∈ N, i.e., the sequence is
bounded from below. The statement about limes superior is proved similarly.

Lemma 1.21. A sequence (xn)n∈N in R is convergent with limit x ∈ R if and only
if lim inf xn = lim sup xn = x.

Furthermore, xn → ∞ for n → ∞ if and only if lim inf xn = ∞ and xn → −∞
for n → ∞ if and only if lim supxn = −∞.

Proof. Suppose xn → x ∈ R for n → ∞. If ϵ > 0 then we can find n0 such that |xn−
x| < ϵ for n > n0. Then xn ∈ [x− ϵ, x+ ϵ] for n > n0, hence infn>n0 xn, supn>n0

xn ∈
[x−ϵ, x+ϵ] and lim inf xn, lim supxn ∈ [x−ϵ, x+ϵ]. As ϵ was arbitrary we must have
lim inf xn = lim supxn = x. Conversely, suppose lim inf xn = lim supxn = x ∈ R
and we are given ϵ > 0. We can find n1 ∈ N such that infn>n1 xn > x− ϵ and n2 ∈ N
such that supn>n2

xn < x+ ϵ. If n0 = max{n1, n2} then n > n0 ⇒ xn ∈]x− ϵ, x+ ϵ[.
If xn → ∞ for n → ∞ and c ∈ R then we can find n0 such that x > c for n > n0.

Then infn>n0 xn ≥ c and hence lim inf xn ≥ c. As c was arbitrary we must have
lim inf xn = ∞. Conversely, if lim inf xn = ∞ and we are given c ∈ R then we can
find n0 such that infn>n0 xn ≥ c and hence xn ≥ c for all n > n0. The proof of the
last statement is similar.

Lemma 1.22. Let (xn)n∈N be a sequence in R. Then there exists a subsequence xnk

such that xnk
→ lim inf xn for k → ∞. Likewise there exists a subsequence xnk

such
that xnk

→ lim supxn for k → ∞.

Proof. If lim inf xn ∈ R we let ak = infn>k xn. Then ak > −∞ and ak → lim inf xn

for k → ∞. Choose n1 > 1 such that |xn1 − a1| < 1. Choose n2 > n1 such that
|xn2 − an1| < 1

2
. Choose n3 > n2 such that |xn3 − an2| < 1

3
and so on. That is, we

recursively choose nk+1 > nk such that |xnk+1
− ank

| < 1
k+1

. Then we have that

|xnk
− lim inf xn| = |xnk

− ank−1
+ ank−1

− lim inf xn|
≤ |xnk

− ank−1
|+ |ank−1

− lim inf xn|

<
1

k
+ |ank−1

− lim inf xn| → 0 + 0 = 0 , for k → ∞ .

If lim inf xn = −∞ then (xn)n∈N is not bounded from below. So we can choose
n1 ∈ N such that xn1 < −1, can choose n2 > n1 such that xn2 < −2 and so on. That
is, we recursively choose nk+1 > nk such that xnk+1

< −k − 1. Now xnk
→ −∞ for

k → ∞.
If lim inf xn = ∞ the statement is Lemma 1.21. The statement about limes

superior is proved similarly.

date/time: January 15, 2024/20:45 13 of 112



CHAPTER 1. THE REAL NUMBERS 1.4. OPEN AND CLOSED SETS

1.4 Open and closed sets
Definition 1.23. A set U ⊆ R is called open if we for all x ∈ U can find a r > 0
such that ]x− r, x+ r[⊆ U .

So a subset U is open if any point in U can move a little bit to the left and right
and still be in U . We see that an open interval ]a, b[ is open, that R is open and
that ∅ is open.

Arbitrary unions of open sets are open:

Theorem 1.24. If (Uj)j∈J is an arbitrary collection of open sets in R then their
union

⋃
j∈J Uj is open. (J is some index set).

Proof. Let x ∈
⋃

j∈J Uj then x ∈ Uj0 for j0 ∈ J . As Uj0 is open we can find r > 0
such that ]x− r, x+ r[⊆ Uj0 . But Uj0 ⊆

⋃
j∈J Uj so ]x− r, x+ r[⊆ U .

Finite intersections of open sets are open:

Theorem 1.25. If U1, U2, . . . , Un ⊆ R are open sets then their intersection U1 ∩
U2 ∩ · · · ∩ Un is open.

Proof. Let x ∈ U1 ∩ · · · ∩ Un. For k = 1, . . . , n the set Uk is open so we can find rk
such that ]x − rk, x + rk[⊆ Uk. Put r = min{r1, . . . , rn}. For k = 1, . . . , n we then
have ]x− r, x+ r[⊆]x− rk, x+ rk[⊆ Uk. But then ]x− r, x+ r[⊆ U1 ∩ · · · ∩ Un.

Definition 1.26. Let A ⊆ R be an arbitrary subset. A subset U ⊆ A is called open
relative to A if there exist an open set U ′ ⊆ R such that U = A ∩ U ′.

Lemma 1.27. The following is equivalent for a subset U ⊆ A:

1. U is open relative to A.

2. For all x ∈ U have an r > 0 such that A∩]x− r, x+ r[⊆ U .

Proof. 1 ⇒ 2: If U ⊆ A is open relative to A then we have an open set U ′ ⊆ R such
that U = A ∩ U ′. If x ∈ U then we can find r > 0 such that ]x− r, x+ r[⊆ U ′, but
then A∩]x− r, x+ r[⊆ S ∩ U = U ′.
2 ⇒ 1: For each x ∈ U we choose rx > 0 such that A∩]x− rx, x+ rx[⊆ U . We now
put U ′ =

⋃
x∈U ]x− rx, x+ rx[. Then U ′ is open and U ⊆ A∩U ′. On the other hand

A ∩ U ′ =
⋃

x∈U ′(A∩]x− rx, x+ rx[) ⊆ U . Hence U = A ∩ U ′.

Theorem 1.28. Let A ⊆ R be an arbitrary subset. We have the following properties
of relative open sets:

1. If (Uj)j∈J is an arbitrary collection of relative open sets in A then their union⋃
j∈J Uj is relative open.

2. If U1, U2, . . . , Un ⊆ A are relative open sets in A then U1 ∩ U2 ∩ · · · ∩ Un is
relative open.
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CHAPTER 1. THE REAL NUMBERS 1.4. OPEN AND CLOSED SETS

Proof. Suppose (Uj)j∈J are relative open sets. For each j ∈ J we can find an open
set Uj ⊆ R such that Uj = A ∩ U ′

j. If we put U ′ =
⋃

j∈J U
′
j then U ′ is open and

A ∩ U ′ =
⋃

j∈J(A ∩ U ′
j) =

⋃
j∈J Uj so

⋃
j∈J Uj is relative open.

Now suppose U1, . . . , Un ⊆ A are relative open sets. for each k = 1, . . . , n we can
find an open set U ′

k ⊆ R such that Uk = A ∩ U ′
k. If we put U ′ = U ′

1 ∩ · · · ∩ U ′
n then

U ′ is open and

A ∩ U ′ = A ∩ U ′
1 ∩ · · · ∩ U ′

n = (A ∩ U ′
1) ∩ · · · ∩ (A ∩ U ′

n) = U1 ∩ · · · ∩ Un .

Definition 1.29. Let A ⊆ R be arbitrary. A set F ⊆ A is called closed relative to
A if the complement A \ F is relative open (if A = R then we call F closed).

A closed interval [a, b] is closed (the complement ] − ∞, a[∪]b,∞[ is open), R
is closed (the complement ∅ is open), and ∅ is closed (the complement R is open).
Theorem 1.28 implies

Theorem 1.30. Let A ⊆ R be arbitrary. We have the following properties of relative
closed sets.

1. If (Fj)j∈J is an arbitrary collection of relative closed subsets of A then their
intersection

⋂
j∈J Fj is relative closed.

2. If F1, F2, . . . , Fn are relative closed subsets of A then their union F1∪F2∪· · ·∪
Fn is relative closed.

We can test if a set set is closed using convergent sequences:

Theorem 1.31. The following is equivalent for a set F ⊆ A ⊆ R:

1. F is closed relative to A.

2. If (xn)n∈N is a convergent sequence in F and limn→∞ xn ∈ A then limn→∞ xn ∈
F .

Proof. Assume F is closed relative to A and let (xn)n∈N be a convergent sequence in
F . Assume x = limn→∞ xn ∈ A\F . Because A\F is open relative to A we can find
r > 0 such that B(x, r) ∩ A ⊆ A \ F , i.e., F ∩ B(x, r) = ∅. We can choose n0 ∈ N
such that n > n0 ⇒ |xn − x| < r, but then xn ∈ B(x, r) ∩ F , a contradiction.

Conversely, assume that 2. holds we need to show that A \ F is open relative to
A. Assume the opposite. Then we can find x ∈ A \ F such that we for all r > 0
have that B(x, r)∩A ̸⊆ A \ F , i.e., that B(x, r)∩ F ̸= ∅. For n ∈ N we now choose
xn ∈ B(x, 1

n
) ∩ F . We have |xn − x| < 1

n
so xn → x ∈ A for n → ∞. But then

x ∈ F , a contradiction.
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1.5 Exercises
Exercise 1.1. Is the sequence

(
1
n2

)
n∈N convergent? If that is the case what is the

limit?

Exercise 1.2. Is the sequence
(

n2+n
n2

)
n∈N

convergent? If that is the case what is
the limit?

Exercise 1.3. Is the sequence
(

n3+n
n2

)
n∈N

convergent? If that is the case what is
the limit?

Exercise 1.4. Let (xn)n∈N be a sequence in R and assume that xn ̸= 0 for all n ∈ N.
Show:

• If xn → 0 for n → ∞ then 1
xn

→ ∞ for n → ∞.

• If xn → ∞ for n → ∞ then 1
xn

→ 0 for n → ∞.

Exercise 1.5. Consider the sequence ((−1)n)n∈N. Can you find a convergent sub-
sequence?

Exercise 1.6. Consider the sequence (pn
qn
)n∈N in Q from Example 1.7 and let x ∈ R.

Show that there is a subsequence (
pnk

qnk
)k∈N such that pnk

qnk
→ x for k → ∞. Hint: Use

that any rational number appears infinitely many times in the sequence and that x
can be approximated arbitrarily well by a rational number.

Exercise 1.7. Let A = {x ∈ Q | x2 ≤ 2}. Show that A is bounded from both above
and below. Find inf A and supA. Does A have a maximum and/or a minimum?

Exercise 1.8. Show that an open interval is open.

Exercise 1.9. Show that the set { 1
n
| n ∈ N} is relative closed to ]0, 1]. But not

closed in R.
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Chapter 2

Functions of one real variable

Before we move onto (vector) function of several variables we will make the concepts
of continuity and differentiability precise for functions of one variable. We will also
prove some important theorems about continuous functions. In particular that image
of a closed interval is a closed interval.

2.1 Continuity
Definition 2.1. Let I ⊆ R be an interval. A function f : I → R is called continuous
at a point x0 ∈ I if we for all positive numbers ϵ can find a positive number δ such
that if x ∈ I and |x − x0| < δ then |f(x) − f(x0)| < ϵ. With logical symbols this
can be written

∀ϵ > 0 ∃δ > 0∀x ∈ I : |x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ . (2.1)

See Figure 2.1

Figure 2.1: Continuity: Given an ϵ-interval around f(x0) there exits a δ-interval
around x0 that maps into the given interval around f(x0).

Remark 2.2. The continuity condition is often written as

f(x) → f(x0) for x → x0 . (2.2)

This notation is due to the fact that we can formulate continuity in terms of
convergent sequences
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CHAPTER 2. FUNCTION OF ONE VARIABLE 2.1. CONTINUITY

Theorem 2.3. Let I ⊆ R be an interval. A function f : I → R is continuous in
x0 ∈ I if an only if we for all sequences (xn)n∈N in I have that xn → x0 for n → ∞
implies that f(xn) → f(x0) for n → ∞.

Proof. Suppose f is continuous in x0 and that xn → x0 for n → ∞. Given ϵ > 0. As
f is continuous in x0 we can find δ > 0 such that |x− x0| < δ ⇒ |f(x)− f(x0)| < ϵ.
As xn → x0 for n → ∞ we can find n0 such that n > n0 ⇒ |xn − x0| < δ, but then
we have |f(xn)− f(x0)| < ϵ, i.e., f(xn) → f(x0) for n → ∞.

Now suppose f is not continuous in x0. Then we can find an ϵ > 0 such that we
for all δ > 0 have some x ∈ I with |x − x0| < δ and f(x) − f(x0)| > ϵ. Hence, for
any n ∈ N we can find xn ∈ I such that |xn − x0| < 1

n
and |f(xn)− f(x0)| > ϵ. We

now have xn → x0 for n → ∞, but f(xn) ̸→ f(x0) for n → ∞.

Example 2.1. The function f : R → R given by f(x) = x is continuous at all points
x ∈ R: For any x0 ∈ R we have |f(x) − f(x0)| = |x − x0|. So if we have an ϵ > 0
and 0 < δ ≤ ϵ then |x− x0| < δ ⇒ |f(x)− f(x0)| < ϵ.

Example 2.2. Let c ∈ R then the function f : R → R given by f(x) = c is continuous
at all points x ∈ R: For any x0 ∈ R we have |f(x) − f(x0)| = 0. So if we have an
ϵ > 0 and 0 < δ then |x− x0| < δ ⇒ |f(x)− f(x0)| < ϵ.

Example 2.3. Let a, b ∈ R then the function f : R → R given by f(x) = ax + b is
continuous at all points x ∈ R. Indeed, for any x0 ∈ R we have |f(x) − f(x0)| =
|ax + b − (ax0 + b)| = |a||x − x0|. So if we have an ϵ > 0 and 0 < δ ≤ ϵ

1+|a| then
|x− x0| < δ ⇒ |f(x)− f(x0)| < |a|

1+|a|ϵ < ϵ.

Example 2.4. The function f : R → R given by f(x) = x2 is continuous at all points
x ∈ R. Indeed, for any x0 ∈ R we have

|f(x)− f(x0)| = |x2 − x2
0| = |x+ x0||x− x0| ≤ (|x|+ |x0|)|x− x0| .

So if we have an ϵ > 0 and 0 < δ ≤ min{ ϵ
1+2|x0| , 1} then |x| ≤ |x0| + 1 and hence

|x − x0| < δ ⇒ |f(x) − f(x0)| < |x|+|x0|
1+2|x0| ϵ ≤ ϵ. Observe that δ depends on x0. The

larger the x0 is, the smaller δ needs to be.

We will use the next example later so we formulate it as a lemma.

Lemma 2.4. The function inv : R \ {0} → R given by inv(x) = 1
x

is continuous at
all points x ∈ R \ {0}.

Proof. If x0 ∈ R and ϵ > 0 then we put δ = min
{

|x0|
2
, |x0|2

2
ϵ
}

. If |x − x0| < δ then
|x| > 1

2
|x0| and we have∣∣∣∣1x − 1

x0

∣∣∣∣ = ∣∣∣∣x0 − x

xx0

∣∣∣∣ = |x− x0|
|x||x0|

<
|x− x0|
1
2
|x0|2

<
1
2
|x0|2ϵ
1
2
|x0|2

= ϵ .
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Notice that the positive number δ is not unique. On the contrary, if one δ works
then any smaller positive number also works.

We do not want to go through arguments as above for any conceivable function
and the following theorem helps us to avoid that.

Theorem 2.5. If x0 ∈ I and f : I → R and g : I → R are continuous in x0 then

1. The function f + g : I → R : x 7→ f(x) + g(x) is continuous in x0.

2. The function fg : I → R : x 7→ f(x)g(x) is continuous in x0.

If x0 ∈ I, f : I → R, f(x) ̸= 0 for all x ∈ I, and f is continuous in x0 then

3. The function 1
f
: I → R : x 7→ 1

f(x)
is continuous in x0.

If I, J ⊆ R are intervals, f : I → R is continuous in x0 ∈ I, f(I) ⊆ J , and
g : J → R is continuous in y0 = f(x0) then

4. The function g ◦ f : I → R : x 7→ g(f(x)) is continuous is x0.

Statement 1, 2, and 3 are a special cases of Theorem 3.9 and Statement 4 is a
special case of Theorem 3.8 so we do not need to give the proofs here. But using
the formulation in terms of sequences it is not hard:

Proof. If f and g are continuous in x0 and xn → x0 for n → ∞ then by Theorem 2.3
f(xn) → f(x0) and g(xn) → g(x0) for n → ∞ and by Theorem 1.9 f(xn)+ g(xn) →
f(x0) + g(x0) but then Theorem 2.3 shows that f + g is continuous in x0. This
proves Case 1. The other cases are similar.

Using induction it is not hard to show

Theorem 2.6. If x0 ∈ I and the functions fk : I → R, k = 1, 2, . . . , n are continu-
ous in x0 then

1. The function f1 + f2 + · · · + fn : I → R : x 7→ f1(x) + f2(x) + · · · + f(x) is
continuous in x0.

2. The function f1f2 · · · fn : I → R : x 7→ f1(x)f2(x) · · · fn(x) is continuous in
x0.

The examples we have seen so far have all been continuous at all points in the
domain. In that case we call the function continuous:

Definition 2.7. Let I ⊆ R be an interval. A function f : I → R is called continuous
if it is continuous at all points x ∈ R. With logical symbols this can be written

∀x ∈ I ∀ϵ > 0∃δ > 0 ∀y ∈ I : |x− y| < δ =⇒ |f(x)− f(y)| < ϵ . (2.3)
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Example 2.5. Any polynomial p : R → R, p(x) = a0+a1x+ · · ·+anx
n is continuous.

Indeed, we know the functions f : x 7→ x and g : x 7→ ak are continuous so the second
statement in Theorem 2.6 tells us that the functions x 7→ akx

k are continuous for all
k = 0, 1, . . . , n. The first statement in the theorem now tells us that p is continuous.

Example 2.6. Let f : R → R be given by

f(x) =

{
x , x ∈ Q ,

0 , x ∈ R \Q .

Then f is continuous in 0 only.

We will without proof use that the trigonometric functions cos, sin, tan, cot,
their inverses arccos, arcsin, arctan, arccot, the exponential function exp, and the
natural logarithm log are continuous functions.

If a > 0 then ax = exp(log(a)x) so Theorem 2.6 tells us that x 7→ ax is continuous.
Similar loga(x) =

log(x)
log(a)

so loga is continuous. If x > 0 then xa = exp(a log(x)) so
x 7→ xa is continuous.

We can formulate continuity in terms of open or closed sets

Theorem 2.8. let A ⊆ R be arbitrary and let f : A → R. The following is equivalent

1. The function f is continuous.

2. For all open sets U ⊆ R the preimage f−1(U) is relative open in A.

3. For all closed sets F ⊆ R the preimage f−1(F ) is relative closed in A.

Proof. 1 ⇒ 2: Suppose f is continuous, U ⊆ R is open, and x0 ∈ f−1(U). As U is
open we can choose r > 0 such that ]f(x0) − r, f(x0) + r[⊆ U . As f is continuous
we can choose δ > 0 such that |x − x0| < δ ⇒ |f(x) − f(x0)| < r. We now have
f(A∩]x0− δ, x0+ δ[) ⊆]f(x0)− r, f(x0)+ r[⊆ U . Hence A∩]x0− δ, x0+ δ[⊆ f−1(U).
By Theorem 1.27 f−1(U) is relative open.

2 ⇒ 1: Suppose x0 ∈ A and ϵ > 0. The interval ]f(x0)− ϵ, f(x0) + ϵ[ is open so
by assumption f−1(]f(x0)− ϵ, f(x0)+ ϵ[) is relative open in A. By Theorem 1.27 we
can find δ > 0 such that A∩]x0 − δ, x0 + δ[⊆ f−1(]f(x0) − ϵ, f(x0) + ϵ[). But then
f(A∩]x0 − δ, x0 + δ[) ⊆]f(x0) − ϵ, f(x0) + ϵ[, i.e., we have found a δ > 0 such that
we for x ∈ A have that |x − x0| < δ ⇒ |f(x) − f(x0)| < ϵ. As ϵ was arbitrary f is
continuous in x0 and as x0 was arbitrary f is continuous.

2 ⇒ 3: Suppose f satisfies 2 and that F ⊆ R is closed. Then R \ F is open
A \ f−1(F ) = f−1(R \ F ) is relative open, i.e., f−1(F ) is relative closed.

3 ⇒ 2: If f satisfies 3 and U ⊆ R is open then R\U is closed and hence f−1(R\U)
is relative closed. Now f−1(U) = A \ f−1(R \ U) is relative open.

The following theorem is very important for mathematical analysis.

Theorem 2.9. Let I be an interval and let f : I → R be continuous. Then the
following holds:
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1. The image f(I) is an interval. We also call sets on the following form for
intervals: ]−∞,∞[, ]−∞, b], and ]a,∞[, where a, b ∈ R.

2. If I is closed, i.e., I = [a, b], where a, b ∈ R, then f(I) is closed, i.e., f(I) =
[c, d], where c, d ∈ R.

Proof. Part 1: Let I be an interval and let f : I → R be a continuous function.
We want to show that f(I) is an interval (allowing ±∞ as endpoints). We do it
indirectly, i.e., we assume the opposite and arrive at a contradiction.

So assume f(I) is not an interval. Then there exists c ∈ R and a, b ∈ I such
that f(a) < c < f(b) and c /∈ f(I).

First assume that a < b. As f(a) < c, f(b) > c, and f is continuous there exists
δ1, δ2 > 0 such that

f(]a, a+ δ1[) ⊆]−∞, c[) and f(]b− δ2, b[) ⊆]c,∞[) . (2.4)

Put U =]a, b[∩f−1(]−∞, c[) and V =]a, b[∩f−1(]c,∞[). They are open sets and
(2.4) shows that ]a, a+ δ1[⊆ U and ]b− δ2, b[⊆ V . Furthermore, ]a, b[= U ∪ V , and
U ∩ V = ∅.

Put d = supU , then a < d < b. The set U is open so if d ∈ U then we can find
ϵ > 0 such that ]d− ϵ, d+ ϵ[⊆ U , but that contradicts that d = supU . Hence d /∈ U .
The set V is open so if d ∈ V then we can find ϵ > 0 such that ]d − ϵ, d + ϵ[⊆ V ,
but as ]d− ϵ, d] ∩ U ̸= ∅ that contradicts that U ∩ V = ∅. Hence d /∈ V .

We see that we must have d /∈ U ∪V =]a, b[, but that contradicts that a < d < b.
That means the existence of c is impossible. Hence f(I) has to be an interval and
we have proved the first statement in Theorem 2.9 in the case a < b.

If b > a we can look at −f and then we see that −f(b) < −f(a) and the first
case shows that −f(I) is an interval, but then f(I) is an interval too.

Part 2: Let I = [a, b] and let f : I → R be a continuous function. We know
f(I) is an interval and we want to show that it is a closed interval.

We first show that f(I) is bounded. Assume the opposite. Then we can find
xn ∈ [a, b] such that |f(xn)| → ∞ for n → ∞. By Theorem 1.13 we have a
convergent subsequence xnk

→ x for k → ∞. As xnk
∈ [a, b] Lemma 1.7 shows that

x ∈ [a, b], but now we have f(xnk
) → f(x) and also |f(xnk

)| → ∞, a contradiction.
We now know we have c, d ∈ R such that ]c, d[⊆ f(I) ⊆ [c, d]. We can find a

sequence (xn)n∈N is [a, b] such that f(xn) → d.
The sequence (xn)n∈N is bounded so by Corollary 1.13 it has a convergent sub-

sequence (xnk
)k∈N. Let x = limk→∞ xnk

. We have x ∈ [a, b] and as f is continuous
f(x) = limk→∞ f(xnk

) = d, i.e., d ∈ f(I). In exactly the same manner we can show
that c =∈ f(I). Hence f(I) = [c, d].

As an easy consequence we have

Corollary 2.10. Let a, b ∈ R and let f : [a, b] → R be continuous. Then f attains
its maximum and minimum, i.e., there exist x1, x2 ∈ [a, b] such that f(x1) ≤ f(x) ≤
f(x2) for all x ∈ [a, b].
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Proof. By Theorem 2.9 we have that f(I) = [c, d] for some c, d ∈ R, but then
c = minx∈I f(x) and d = maxx∈I f(x). So there exist x1, x2 ∈ [a, b] such that
f(x1) = c and f(x2) = d.

In Example 2.4 we saw that given an ϵ > 0 we may not been able to find a
δ > 0 that works for all x ∈ I. If that is possible we call the function uniformly
continuous. The precise definition is

Definition 2.11. Let I ⊆ R be an interval. A function f : I → R is called uniformly
continuous if we for all positive numbers ϵ can find a positive number δ such that
if x, y ∈ I and |x− y| < δ then |f(x)− f(y)| < ϵ. With logical symbols this can be
written

∀ϵ > 0∃δ > 0 ∀x, y ∈ I : |x− y| < δ =⇒ |f(x)− f(y)| < ϵ . (2.5)

Example 2.7. In example 2.3, where f(x) = ax + b, we saw that if ϵ > 0 and
0 < δ < ϵ

1+|a| then |x− y| < δ ⇒ |f(x)− f(x0)| < ϵ. So f is uniformly continuous.

Example 2.8. The function f ;R → R given by f(x) = x2 is not uniformly continuous.
Indeed, let ϵ = 1 and let δ > 0. If x > 1/δ and y = x + δ/2 then |x − y| < δ, but
|f(x)− f(y)| = |2xδ + δ2| > 1 + δ2 > ϵ.

The following theorem says that a continuous function on a bounded closed
interval is uniformly continuous. It is essential for the definition of the Riemann
integral, see Section 2.3.

Theorem 2.12. If f : [a, b] → R is continuous then f is uniformly continuous.

Proof. Suppose the opposite, i.e., that f is not uniformly continuous. Then there
exists an ϵ > 0 and for each n ∈ N can we find xn, yn ∈ [a, b] such that |xn−yn| < 1/n
but |f(xn)− f(yn)| ≥ ϵ. By Theorem 1.13 we can find a a convergent subsequence
(xnk

)k∈N, let x0 = limk→∞ xnk
as |xnk

−xnk
| < 1

nk
we also have ynk

→ x0 for k → ∞.
As f is continuous we can find δ > 0 such that |x− x0| < δ ⇒ |f(x)− f(x0)| < ϵ/2.
We can now find k1 ∈ N such that k > k1 ⇒ |x0 − xnk

| < δ and k2 ∈ N such that
k > k2 ⇒ |x0 − ynk

| < δ. If we put k0 = max{k1, k2} then

k > k0 =⇒ |x0 − xnk
|, |x0 − ynk

| < δ =⇒
|f(x0)− f(xnk

)|, |f(x0)− f(ynk
)| < ϵ/2 =⇒

|f(xnk
)− f(ynk

)| ≤ |f(xnk
)− f(x0)|+ |f(x0)− f(ynk

)| < ϵ/2 + ϵ/2 = ϵ ,

a contradiction.

2.2 Differentiability
Definition 2.13. Let I ⊆ R be an open interval. A function f : I → R is called
differentiable at a point x ∈ I if there exists a number c ∈ R such that

f(x+ h)− f(x)

h
→ c for h → 0 . (2.6)
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With logical symbols this can be written

∃c∀ϵ > 0∃δ > 0∀h ̸= 0 : |h| < δ =⇒
∣∣∣∣f(x+ h)− f(x)

h
− c

∣∣∣∣ < ϵ . (2.7)

The number c is called the derivative at x0.

Remark 2.14. The condition (2.6) can be rewritten as

f(x+ h)− f(x)− ch

h
→ 0 for h → 0 . (2.8)

Remark 2.15. If we put

ϵ(h) =
f(x+ h)− f(x)− ch

h
, (2.9)

then ϵ(h) → 0 for h → 0 and we have

f(x+ h) = f(x) + ch+ ϵ(h)h . (2.10)

That is, we can approximate f around x0 by a first degree polynomial and the error,
ϵ(h)|h|, goes to zero faster than h.
Remark 2.16. The condition (2.6) has a geometrical interpretation: The line through
(x, f(x0) and (x0+h, f(x0+h)) (a secant) has a well defined limit position as h → 0

(the tangent to the graph). The slope of the secant is f(x+h)−f(x)
h

and the slope of
the tangent is the limit c, see Figure 2.2.

Figure 2.2: The limit position of the secant (red) as h → 0 is the tangent (yellow).

Before we look at some examples we note that differentiable functions are con-
tinuous:

Theorem 2.17. If I is an open interval and f : I → R is differentiable at x0 ∈ I
then f is continuous at x0.
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Proof. Let c be the derivative of f at x0 and consider x ∈ R if we let h = x − x0

then we have |x− x0| = |h| and

f(x)− f(x0) = f(x+ h)− f(x) = h
f(x+ h)− f(x)

h
−→
h→0

0 · c = 0 .

Example 2.9. The function f : R → R : x 7→ x is differentiable at all x ∈ R with
derivative 1. Indeed

f(x+ h)− f(x)

h
=

x+ h− x

h
=

h

h
= 1 .

Example 2.10. Let c ∈ R. The function f : R → R : x 7→ c is differentiable at all
x ∈ R with derivative 0. Indeed

f(x+ h)− f(x)

h
=

c− c

h
=

0

h
= 0 .

Example 2.11. The function f : R → R : x 7→ x2 is differentiable at all points with
derivative 2x. Indeed

f(x+ h)− f(x)

h
=

(x+ h)2 − x2

h
=

2xh+ h2

h
= 2x+ h −→

h→0
2x .

As in the previous chapter the next example is formulated as a lemma.

Lemma 2.18. The function inv : R\{0} → R : x 7→ 1
x

is differentiable at all points
with derivative −1

x2 .

Proof. Let x ̸= 0 and assume h ̸= 0 and x+ h ̸= 0. Then∣∣∣∣∣ 1
x+h

− 1
x
− −1

x2 h

h

∣∣∣∣∣ =
∣∣∣∣x2 − x(x+ h) + h(x+ h)

h(x+ h)x2

∣∣∣∣ = ∣∣∣∣ h

(x+ h)x2

∣∣∣∣→ 0 ,

for h → 0 .

Theorem 2.19. If x0 ∈ I and f : I → R and g : I → R are differentiable at x0

with derivatives a and b, respectively. Then

1. The function f + g : I → R : x 7→ f(x) + g(x) is differentiable in x0 with
derivative a+ b.

2. The function fg : I → R : x 7→ f(x)g(x) is differentiable at x0 with derivative
f(x0)a+ bg(x0).

If x0 ∈ I, f : I → R, f(x) ̸= 0 for all x ∈ I, and f is differentiable at x0 with
derivative c then

3. The function 1
f
: I → R : x 7→ 1

f(x)
is differentiable at x0 with derivative −c

f(x0)2
.
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If I, J ⊆ R are open intervals, f : I → R is differentiable at x0 ∈ I with derivative
a, f(I) ⊆ J , and g : J → R is differentiable in y0 = f(x0) with derivative b then

4. The function g ◦f : I → R : x 7→ g(f(x)) is differentiable at x0 with derivative
ab.

Statement 1, 2, and 3 are a special cases of Theorem 3.29 and statement 4 is a
special case of Theorem 3.28 so we will not give the proofs here. But it is a good
exercise to prove it now.

Using induction it is not hard to show

Theorem 2.20. If x0 ∈ I and the functions fk : I → R, k = 1, 2, . . . , n are
differentiable x0 with derivative ck then

1. The function f1 + f2 + · · · + fn : I → R : x 7→ f1(x) + f2(x) + · · · + f(x) is
differentiable at x0 with derivative c1 + · · ·+ cn.

2. The function f1f2 · · · fn : I → R : x 7→ f1(x)f2(x) · · · fn(x) is differentiable at
x0 with derivative

c1f2(x0)f3(x0) . . . fn(x0) + f1(x0)c2f3(x0) . . . fn(x0)+

· · ·+ f1(x0) . . . fn−1(x0)cn .

Definition 2.21. Let I ⊆ R be an open interval. A function f : I → R is called
differentiable if it is differentiable at all points x ∈ I. The derivative at x is denoted
f ′(x), df

dx
(x), or f (1)(x), and the function f ′ : R → R : x 7→ f ′(x) is called the

derivative of f . If f ′ is continuous then f is called a C1 function.

We can define higher order derivatives recursively:

Definition 2.22. Let I ⊆ R be an open interval, let k ∈ Z, and k ≥ 2. The
function is called k times differentiable if it is differentiable and f ′ is k − 1 times
differentiable. The kth derivative is f (k) = (f ′)(k−1). If f (k) is continuous then f is
called a Ck function. If f is k times differentiable for all k then f is called a C∞

function.

Remark 2.23. For lower order derivatives we also use the notation f ′′ = f (2), f ′′′ =
f (3), etc.
Example 2.12. The function f(x) = xn is differentiable with derivative nxn−1. This
follows from the second statement in Theorem 2.20. It can also be shown by induc-
tion on n: The case n = 1 is Example 2.9 and if f(x) = xn is differentiable with
derivative nxn−1 and g(x) = x then xn+1 = f(x)g(x) = (fg)(x) and the second
statement in Theorem 2.19 now tell us that fg : x 7→ xn+1 is differentiable with
derivative

(fg)′(x) = f ′(x)g(x) + f(x)g′(x) = nxn−1x+ xn · 1 = (n+ 1)xn .

A similar argument shows that x 7→ xn is a C∞ function.
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Example 2.13. Any polynomial p : R → R, p(x) = a0 + a1x + · · · + anx
n is differ-

entiable with derivative p′(x) = a1 + 2a2x + · · · + nanx
n−1. This follows from the

previous example and the first statement in Theorem 2.20. Again induction on the
degree of the polynomial shows that a polynomial is a C∞ function.

Definition 2.24. We say that a function f : I → R has a local maximum at x0 ∈ I
if there exist a r > 0 such that f(x) ≤ f(x0 for all x ∈ I ∩ [x0 − r, x0 + r].

We say that f has a local minimum at x0 ∈ I if there exist a r > 0 such that
f(x) ≤ f(x0 for all x ∈ I ∩ [x0 − r, x0 + r].

Lemma 2.25. Suppose f : I → R is differentiable in x0 ∈ I and has a local
maximum or minimum in x0 then f ′(x0) = 0.

Proof. For h ̸= 0 we put

ϵ(h) =
f(x0 + h)− f(x0)− f ′(x0)

h
.

If f ′(x0) > 0 then we can find δ > 0 such that |h| < δ ⇒ |ϵ(h)| < f ′(x0). For |h| < δ
we now have f ′(x0) + ϵ(h) > 0 and that implies that

f(x0 + h) =

{
f(x0) + (f ′(x0) + ϵ(h))h > f(x0) , 0 < h < δ ,

f(x0) + (f ′(x0) + ϵ(h))h < f(x0) , −δ < h < 0 .

So f(x0) is neither a local minimum nor a local maximum. If f ′(x0) < 0 then
−f ′(x0) > 0 so −f(x0) is neither a local minimum nor a local maximum for −f ,
but then the same is true for f . Hence we must have f ′(x0) = 0.

Example 2.14. The opposite is not true: The function f : R → R given by f(x) = x3

has the derivative f ′(x) = 3x2 so f ′(0) = 0. But if x < 0 then f(x) < 0 = f(0)
and if x > 0 then f(x) > 0 = f(0) so f(0) is neither a local minimum nor a local
maximum.

Lemma 2.26 (Rolle’s theorem). If f : [a, b] → R is continuous, f is differentiable
on the open interval ]a, b[, and f(a) = f(b) then there exist ξ ∈]a, b[ such that
f ′(ξ) = 0.

Proof. By Corollary 2.10 f attains it minimum and maximum. If the minimum or
maximum is attained in the open interval ]a, b[ then Lemma 2.25 yields the result.
Otherwise we have the minimum and the maximum at one of the endpoints a and
b, but as f(a) = f(b) the minimum is the same as the maximum. So f must be
constant and consequently f ′(x) = 0 for all x ∈]a, b[.

We can now show the mean value theorem:

Theorem 2.27 (Mean value theorem). If f : [a, b] → R is continuous and f is
differentiable on the open interval ]a, b[ then there exist ξ ∈]a, b[ such that

f(b)− f(a) = f ′(ξ)(b− a) . (2.11)
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Proof. Define g : [a, b] → R by

g(x) = f(x)− f(a)(b− x) + (x− a)f(b)

b− a
.

Then g is continuous, differentiable on ]a, b[ and with derivative g′(x) = f ′(x) −
f(b)−f(a)

b−a
. Furthermore, g(a) = g(b) = 0. So by Rolle’s theorem we have a ξ ∈]a, b[

such that g′(ξ) = 0. But then f ′(ξ) = f(b)−f(a)
b−a

which is equivalent to (2.11).

Remark 2.28. We have a geometrical interpretation of the theorem: The graph of f
has a tangent that is parallel to the line between the end points, see Figure 2.3 left.

Figure 2.3: Left: A differentiable function have a tangent parallel to the line between
the end points. Middle: A smooth curve has a tangent parallel to the line between
the end points. Right: If a curve has a cusp (where f ′(ξ), g′(ξ) = (0, 0)) there need
not be a tangent parallel to the line between the end points.

We easily obtain the following variant

Theorem 2.29. Let I ⊆ R be an open interval, let f : I → R be differentiable and
let x, x+ h ∈ I then there exist ξ between x and x+ h such that

f(x+ h) = f(x) + f ′(ξ)h . (2.12)

Proof. If h > 0 we but a = x and b = x + h and if h < 0 we put a = x − h and
b = x. In both cases the result is the same as Theorem 2.27.

As a corollary we have

Corollary 2.30. Let I ⊆ R be an open interval and f : I → R be differentiable. If
f ′(x) = 0 at all points x ∈ I then f is constant.

Proof. Let x0, x ∈ I and put h = x − x0. Then the Mean value theorem says that
f(x) = f(x0 + h) = f(x0) + f ′(ξ)h = f(x0).

In order to prove Taylor’s theorem with reminder we need a slightly stronger
version of the mean value theorem.

date/time: January 15, 2024/20:45 27 of 112



CHAPTER 2. FUNCTION OF ONE VARIABLE 2.2. DIFFERENTIABILITY

Theorem 2.31 (Cauchy’s mean value theorem). If f, g : [a, b] → R are continuous
and differentiable on the open interval ]a, b[ then there exist ξ ∈]a, b[ such that

(f(b)− f(a))g′(ξ) = f ′(ξ)(g(b)− g(a)) . (2.13)

If g(a) ̸= g(b) we have
f(b)− f(a)

g(b)− g(a)
=

f ′(ξ)

g′(ξ)
. (2.14)

Proof. If g(a) = g(b) then Rolle’s theorem yields ξ]a, b[ such that g′(ξ) = 0 and both
sides of (2.13) is zero.

If g(a) ̸= g(b) then we define h : [a, b] → R by h(x) = f(x) − g(x)f(b)−f(a)
g(b)−g(a)

. We
see that

h(b)− h(a) = f(b)− f(a)− (g(b)− g(a))
f(b)− f(a)

g(b)− g(a)
= 0 .

As h is continuous and differentiable on the open interval ]a, b[ Rolle’s theorem give
us a ξ ∈]a, b[ such that h′(ξ) = 0, i.e., f ′(ξ) = g′(ξ)f(b)−f(a)

g(b)−g(a)
. Multiplying with

g(b)− g(a) yields (2.13) and multiplying with 1
g′(ξ)

yields (2.14).

Remark 2.32. If we let g(x) = x then we obtain the ordinary mean value theorem.

Remark 2.33. If (f ′(t), g′(t)) ̸= (0, 0) for all t ∈]a, b[ we have a geometrical interpre-
tation of the theorem: The curve (f(t), g(t)) has a tangent that is parallel to the
line between the end points (f(a), g(a)) and (f(b), g(b)), see Figure 2.3 middle and
right.

We can generalise (2.10) to higher order derivatives, but first we prove the fol-
lowing Lemma.

Lemma 2.34. Let I ⊆ R be an open interval, let f : I → R be an n times
differentiable function and let x, x+ h ∈ I. If f (k)(x) = 0 for k = 0, 1, . . . , n then

f(x+ h)

hn
→ 0 for h → 0 . (2.15)

Proof. The proof is by induction on n. The case n = 1 is the definition of differen-
tiability (when f(x), f ′(x) = 0). So assume the theorem holds for an n ∈ N, that f
is n + 1 times differentiable, and that f (k)(x) = 0 for k = 0, 1, . . . , n + 1. Then f ′

satisfies the conditions in the theorem so

f ′(x+ h)

hn
→ 0 for h → 0 .

By the mean value theorem we have f(x+ h) = f ′(x+ ξh) for a ξ ∈]0, 1[ and hence∣∣∣∣f(x+ h)

hn+1

∣∣∣∣ = ∣∣∣∣f ′(x+ ξh)

hn

∣∣∣∣ ≤ ∣∣∣∣f ′(x+ ξh)

(ξh)n

∣∣∣∣→ 0 for h → 0 .
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Theorem 2.35 (Taylor’s theorem). Let I ⊆ R be an open interval, let f : I → R
be an n times differentiable function and let x, x+ h ∈ I. Then

f(x+ h) =
n∑

k=0

1

k!
f (k)(x)hk + ϵ(h)|h|n

= f(x) + f ′(x)h+
f ′′(x)

2
h2 + · · ·+ f (n)(x)

n!
hn + ϵ(h)hn , (2.16)

where ϵ(h) → 0 for h → 0.

Proof. If we put g(t) = f(x+ t)−
∑n

k=0
1
k!
f (k)(x)tk then g(k)(0) = 0 for k = 0, . . . , n.

So Lemma 2.34 tells us that

ϵ(h) =
g(x+ h)

hn
→ 0 for h → 0 .

Remark 2.36. The polynomial
∑n

k=0
1
k!
f (k)(x)hk is called the nth degree Taylor poly-

nomial .

We can also generalise the mean value theorem to higher order derivatives, but
here we need the following lemma.

Lemma 2.37. Let I ⊆ R be an open interval, let f : I → R be an n times
differentiable function and let x, x + h ∈ I. If f (k)(x) = 0 for k = 0, 1, . . . , n then
there exists ξ ∈]0, 1[ such that

f(x+ h) =
f (n)(x+ ξh)

n!
hn . (2.17)

Proof. As f(x) = 0 (2.17) is obvious if h = 0. So assume h ̸= 0. Then (2.17) is
equivalent to f(x+h)

hn = f (n)(x+ξh)
n!

. If we put g(t) = (t − x)n then g(x + h) = hn and
g(n)(t) = n!. As f(x) = g(x) = 0 we can rewrite the equation as

f(x+ h)− f(x)

g(x+ h)− g(x)
=

f(x+ h)

g(x+ h)
=

f (n)(x+ ξh)

g(n)(x+ ξh)
.

We will prove this using induction on n. The case n = 1 is Cauchy’s mean value
theorem (Lemma 2.31). Now assume the theorem is true for an n ∈ N and that
f : I → R is an n times differentiable function with f (k)(x) = 0 for k = 0, 1, . . . , n+
1. The function f is differentiable so Cauchy’s mean value theorem yields a ξ1 ∈
]0, 1[ such that f(x+h)

g(x+h)
= f(x+h)−f(x)

g(x+h)−g(x)
= f ′(x0+ξ1h)

g′(x0+ξ1h)
. The functions f ′ and g′ are n

times differentiable so by the induction hypothesis we can find ξ2 ∈]0, 1[ such that
f ′(x0+ξ1h)
g′(x0+ξ1h)

= f (n+1)(x+ξ2ξ1h)

g(n+1)(x+ξ2ξ1h)
. Letting ξ = ξ2ξ1 we have f(x+h)−f(x)

g(x+h)−g(x)
= f (n+1)(x+ξh)

g(n+1)(x+ξh)
and we

are done.

This lemma gives us the following generalisation of Theorem 2.29:
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Theorem 2.38 (Taylor’s theorem with reminder). Let I ⊆ R be an open interval,
let f : I → R be a Cn function and let x, x+ h ∈ I. Then there exist ξ ∈]0, 1[ such
that

f(x+ h) =
n−1∑
k=0

1

k!
f (k)(x)hk +

1

n!
f (n)(x+ ξh)hn . (2.18)

Proof. If we put g(t) = f(x+ t)−
∑n

k=0
1
k!
f (k)(x)tk then g(k)(0) = 0 for k = 0, . . . , n.

So Lemma 2.37 gives us a ξ ∈]0, 1[ such that g(h) = g(n)(ξh)hn. Furthermore,
g(n)(t) = f (n)(x+ t)− f (n)(x) = f (n)(x+ t) and

f(x+ h) =
n∑

k=0

1

k!
f (k)(x)hk + g(h) =

n−1∑
k=0

1

k!
f (k)(x)hk +

1

n!
f (n)(x+ ξh)hn .

We saw in Lemma 2.25 that f ′(x0) = 0 was a necessary condition for having a
local maximum or minimum, but in Example 2.14 we also saw that it is not sufficient.
If the second derivative is non zero then we can say more:

Theorem 2.39. Let I ⊆ R be an open interval and let x0 ∈ I. Suppose f : I → R
is twice differentiable with f ′(x0) = 0. If f ′′(x0) > 0 then f(x0) is a local maximum
and if f ′′(x0) < 0 then f(x0) is a local minimum

Proof. By Taylor’s theorem we have

f(x0 + h) = f(x0) + f ′(x0)h+
1

2
f ′′(x0)h

2 + ϵ(h)h2

= f(x0) +

(
1

2
f ′′(x0) + ϵ(h)

)
h2 ,

where ϵ(h) → 0 for h → 0. We can find r > 0 such that |h| < r ⇒ ϵ(h) < 1
2
|f ′′(x0)|.

As h2 ≥ 0 we see that
(
1
2
f ′′(x0) + ϵ(h)

)
h2 has the same sign as f ′′(x0) for |h| < r

and now the result follows.

Example 2.15. Suppose we want to find local maxima and minima for the polynomial
f(x) = x3 − 3x. The derivative is f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x + 1)(x − 1).
So the potential local minima and maxima are x = ±1. The second derivative is
f ′′(x) = 6x so f ′′(−1) = −6 < 0 and f ′′(1) = 6 > 0 so we have a local maximum for
x = −1 and a local minimum for x = 1, see Figure 2.4.

Example 2.16. Suppose we want to find local maxima and minima for the polynomial
f(x) = x4−2x2. The derivative is f ′(x) = 4x3−4x = 4x(x2−1) = 4x(x+1)(x−1).
So the potential local minima and maxima are x = −1, 0, 1. The second derivative
is f ′′(x) = 12x2 − 4 so f ′′(±1) = 12 − 4 = 8 > 0 so we have a local minimum for
x = ±1. We have f ′′(0) = −4 so we have a local maximum for x = 0, see Figure 2.4.

Example 2.17. Suppose we want to find local maxima and minima for the polynomial
f(x) = 1

5
x5− 1

3
x3. The derivative is f ′(x) = x4−x2 = x2(x2−1) = 4x(x+1)(x−1).

So the potential local minima and maxima are x = −1, 0, 1. The second derivative
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is f ′′(x) = 4x3 − 2x so f ′′(−1) = −4 + 2 = −2 and f ′′(1) = 4 − 2 = 2. So we have
a local maximum for x = −1 and a local minimum for x = 1. The third potential
point is x = 0 but f ′′(0) = 0 and we cannot say anything. (The third derivative is
f ′′′(0) = −2 and it can be shown that this implies that we neither have a maximum
nor a minimum), see Figure 2.4.

Figure 2.4: Left to right: Example 2.15, 2.16, and 2.17.

It is in general not so easy to find the zeros of f ′ and more often than not we
have to resort to numerical methods.

The following is a special case of the inverse function theorem.

Theorem 2.40 (Inverse function theorem). Let I ⊆ R be an open interval and let
f : I → R be differentiable with continuous derivative f ′(x) ̸= 0 for all x ∈ R. Then
the image J = f(I) is an open interval, f is invertible, and the inverse f−1 : J → I
is differentiable with derivative (f−1)′(y) = 1

f ′(f−1(y))
.

Proof. As f is continuous J = f(I) is an interval. We need to show that it is open.
As f ′ is continuous f ′(I) is an interval and as 0 /∈ f ′(I) we have that f is

either monotonically strictly increasing or monotonically strictly decreasing. So f
is injective and hence invertible.

We can now show that J is open. If y ∈ J we put x = f−1(y) ∈ I. As I is open
we can find x1, x2 ∈ I such that x1 < x < x2 and then we have that y = f(x is
between f(x1) and f(x2). So y cannot be an endpoint, i.e., J is open.

We now consider a y ∈ J . Before we find the derivative of the inverse we need a
little bit of preparation. We put x = f−1(y) and choose a, b ∈ I such that a < x < b.
Now f([a, b]) is a closed interval [c, d] ⊆ J and c < y < d. If h > 0 and y+ h ∈ [c, d]
then we put k = f−1(y + h) − f−1(y), i.e., y + h = f(x + k). By the mean value
theorem we have

h = y + h− y = f(x+ k)− f(x) = f ′(ξ)k

and hence

|k| =
∣∣∣∣ h

f ′(ξ)

∣∣∣∣ ≤ |h|
mint∈[a,b] |f ′(t)|

.
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We see that h → 0 ⇒ k → 0 and hence

f−1(y + h)− f−1(y)

h
=

x+ k − x

f(x+ k)− f(x)

=
1

f(x+k)−f(x)
k

−→
h→0

1

f ′(x)
=

1

f ′(f−1(y))
.

Example 2.18. The elementary functions are differentiable with derivatives given in
the following table

f(x) log x expx cosx sinx

f ′(x) 1
x

expx − sinx cosx

We can define the natural logarithm as log(x) =
∫ x

1
1
t
dt so the derivative is clearly

1
x
. We can then define exp as the inverse of log and then we have that the derivative

is 1
1

exp x

= expx. The derivatives of cosine and sine are derived in Appendix C.

Given this we can find the derivatives of more functions
Example 2.19. If a > 0 then the following functions are differentiable

f(x) xα ax tanx = sinx
cosx

cotx = cosx
sinx

f ′(x) αxα−1 log(a)ax 1
cos2 x

= 1 + tan2 x −1
sin2 x

= −(1 + cot2 x)

f(x) loga(x) arccosx arcsinx arctanx arccotx

f ′(x) 1
x log a

−1√
1−x2

1√
1−x2

1
1+x2

−1
1+x2

2.3 The Riemann integral
Given a continuous function f : [a, b] → R we want to make sense of the area under
the graph, or rather the area between the x-axis and the graph, where the portion
over the x-axis is counted positive and the area below the x-axis is counted negative,
see Figure 2.5. In order to that we partition the interval [a, b] in n pieces, i.e., we pick
xk ∈ [a, b] for k = 0, 1, . . . , n such that a = x0 < x1 < · · · < xn = b and consider the
closed intervals [xk−1, xk] for k = 1, 2, . . . , n. In each interval the function f attains
its minimum ck = minx∈[xk−1,xk] f(x) and its maximum dk = maxx∈[xk−1,xk] f(x). We
can now write down a lower sum and an upper sum

L((xk)
n
k=0) =

n∑
k=1

ck(xk − xk−1) , U((xk)
n
k=0) =

n∑
k=1

dk(xk − xk−1) , (2.19)

respectively, see Figure 2.6.
A partition a = x′

0 < x′
1 < · · · < x′

n′ = b is called a refinement of the part-ion
a = x0 < x1 < · · · < xn = b if it is obtained by partitioning some (or all) of the
intervals [xk−1, xk], i.e., if {xk | k = 0, . . . , n} ⊆ {x′

k | k = 0, . . . , n′}. If we refine
a part-ion then the corresponding lower sum becomes bigger and the corresponding
upper sum becomes smaller:
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Figure 2.5: The area over the x-axis is counted positive (pink). The area under the
x-axis is counted negative (light blue).

Figure 2.6: To the left the signed area of an upper sum. To the right of a lower sum.
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Lemma 2.41. If a = x′
0 < x′

1 < · · · < x′
n′ = b is a refinement of a = x0 < x1 <

· · · < xn = b then L((xk)
n
k=0) ≤ L((x′

k)
n′

k=0) ≤ U((x′
k)

n′

k=0) ≤ U((xk)
n
k=0).

Proof. As c′k = minx∈[x′
k−1,x

′
k]
f(x) ≤ maxx∈[xk−1,xk] f(x) = d′k we clearly have L((x′

k)
n′

k=0) ≤
U((x′

k)
n′

k=0).
If a ≤ t1 < t2 < t3 ≤ b then minx∈[t1,t3] f(x) is a lower bound for f on both

[t1, t2]and [t2, t3]. Hence

min
x∈[t1,t3]

f(x)(t3 − t1) = min
x∈[t1,t3]

f(x)((t2 − t1) + (t3 − t2))

≤ min
x∈[t1,t2]

f(x)(t2 − t1) + min
x∈[t1,t3]

f(x)(t3 − t2) .

So L((xk)
n
k=0) ≤ L((x′

k)
n′

k=0). Likewise, maxx∈[t1,t3] f(x) is an upper bound for f on
both [t1, t2]and [t2, t3] and the inequality U((x′

k)
n′

k=0) ≤ U((xk)
n
k=0) follows.

Any lower sum is smaller than any upper sum

Lemma 2.42. If a = x0 < x1 < · · · < xn = b and a = x′
0 < x′

1 < · · · < x′
n′ = b are

two partitions of [a, b] then L((x′
k)

n′

k=0) ≤ U((xk)
n
k=0).

Proof. By sorting the set {x0, x1, . . . , xn, x
′
0, x

′
1, . . . , x

′
n′} we obtain a partition a =

x′′
0 < x′′

1 < · · · < x′′
n′′ = b that is a refinement of both of the given partitions. Now

Lemma 2.41 tells us that L((x′
k)

n′

k=0) ≤ L((x′′
k)

n′′

k=0) ≤ U((x′′
k)

n′′

k=0) ≤ U((xk)
n
k=0).

So the set of all lower sums are bounded from above (by any upper sum) and set
of all upper sums are bounded from below (by any lower sum). Hence the supremum
of the former and the infimum of the latter exist. It turns out that these two numbers
are equal:

Theorem 2.43. Let

L = {L((xk)
n
k=0) | a ≤ x0 < x1 < · · · < xn = b} ,

and

U = {U((xk)
n
k=0) | a ≤ x0 < x1 < · · · < xn = b} ,

be the sets of all lower and upper sums, respectively. Then supL = inf U .

Proof. If L ∈ L and U ∈ U then L ≤ U so we clearly have supL ≤ inf U .
Let ϵ > 0 be given. As f is continuous Theorem 2.12 says that f is uniformly

continuous. So there exist δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ϵ, for
all x, y ∈ [a, b].

We now choose n ∈ N such that b−a
n

< δ and we put xk = n−k
n
a + k

n
b for

k = 0, 1, . . . , n. This gives a partition a = x0 < x1 < · · · < xn = b where xk−xk−1 =
b−a
n

< δ for all k = 1, 2, . . . , n.
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Letting ck = minx∈[xk−1,xk] f(x) and dk = maxx∈[xk−1,xk] f(x) we have ck = f(sk)
and dk = f(tk) for some sk, tk ∈ [xk−1, xk].

Then |tk − sk| ≤ xk − xk−1 < δ and dk − ck < ϵ for all k = 1, 2, . . . , n. We finally
have

U((xk)
n
k=0)− L((xk)

n
k=0) =

n∑
k=1

dk(xk − xk−1)−
n∑

k=1

ck(xk − xk−1)

=
n∑

k=1

(dk − ck)
b− a

n
<

n∑
k=1

ϵ
b− a

n
= ϵ .

As L((xk)
n
k=0) ≤ supL ≤ inf U ≤ U((xk)

n
k=0) we have

inf U − supL ≤ U((xk)
n
k=0)− L((xk)

n
k=0) < ϵ .

Hence inf U < supL + ϵ for all ϵ > 0 and that implies inf U ≤ supL ≤ inf U , i.e.,
supL = inf U .

We now define the integral of f over [a, b] as this common value:

Definition 2.44. Let f : [a, b] → R be continuous. The integral of f is∫ b

a

f(x) dx = supL = inf U ,

where L and U are the the sets of lower and upper sums, respectively.

If we examine the proof of Theorem 2.43 we see that we have

Lemma 2.45. Let f : [a, b] → R be continuous and let ϵ > 0 be given. If δ > 0,
|x − y| < δ ⇒ |f(x) − f(y) < ϵ, and a = x0 < x1 < · · · < xn = b is a partition of
[a, b] such that xk − xk−1 < δ, then

0 ≤ U((xk)
n
k=0)−

∫ b

a

f(x) dx < ϵ ,

0 ≤
∫ b

a

f(x) dx− L((xk)
n
k=0) < ϵ .

So in principle we can approximate the integral
∫ b

a
f(x) dx by a lower or upper

sum of a sufficiently dense partition of [a, b], but then we will have to find the
minimum or maximum of f on all the subintervals [xk−1, xk]. That is clearly very
cumbersome. Instead we can just evaluate f in any point ξk ∈ [xk−1, xk] and thereby
obtain what is called a Riemann sum

M((xk)
n
k=0, (ξk)

n
k=1) =

n∑
k=1

f(ξk)(xk − xk−1) ., (2.20)

see Figure 2.7. In the figure we have used the mid points ξk = xk−1+xk

2
, but that is

not important.

date/time: January 15, 2024/20:45 35 of 112



CHAPTER 2. FUNCTION OF ONE VARIABLE 2.3. THE INTEGRAL

Figure 2.7: The signed area of a Riemann sum.

Remark 2.46. Observe that both the lover sum L((xk)
n
k=0) and the upper sum

U((xk)
n
k=0) is a Riemann sum and that

L((xk)
n
k=0) ≤ M((xk)

n
k=0, (ξk)

n
k=1) ≤ U((xk)

n
k=0)

for any Riemann sum M((xk)
n
k=0, (ξk)

n
k=1).

Theorem 2.47. Let f : [a, b] → R be continuous and let ϵ > 0 be given. If δ > 0,
|x − y| < δ ⇒ |f(x) − f(y) < ϵ, a = x0 < x1 < · · · < xn = b is a partition of [a, b]
such that xk − xk−1 < δ and ξk ∈ [xk−1, xk], then∣∣∣∣∣

∫ b

a

f(x) dx−
n∑

k=1

f(ξk)(xk − xk−1)

∣∣∣∣∣ < ϵ .

Proof. As L((xk)
n
k=0) ≤

∑n
k=1 f(ξk)(xk − xk−1) ≤ U((xk)

n
k=0) the result is a conse-

quence of Lemma 2.45.

Remark 2.48. The theorem says that the integral is the limit of Riemann sums,
where the largest difference in the partitions (max(xk − xk−1)) goes to zero. That
means that many properties of Riemann sums are valid for integrals

As a Riemann sum is linear in f , so is the integral:

Theorem 2.49. If f, g : [a, b] → R are two continuous functions and λ ∈ R then∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx =

∫ b

a

g(x) dx ,∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx .

Proof. Left as Exercise 2.8.

For a Riemann sum we have |
∑n

k=1 f(ξ)(xk − xk−1)| ≤
∑n

k=1 |f(ξ)|(xk − xk−1) .
Similar for an integral:
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Theorem 2.50. If f : [a, b] → R is continuous then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx .

Proof. Left as Exercise 2.9.

We can split an integral in two (or more) integrals:

Theorem 2.51. Let f : [a, c] → R be continuous and let b ∈ [a, c] then∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx .

Proof. Let a = x0 < x1 < · · · < xn = c be a partition of [a, c]. Either we have
b = xm for some m or we have a m such that xm−1 < b < xm. In the first case
we put x′

k = xk all k = 0, 1, . . . , n and in the second case we put x′
k = xk for

k = 0, 1, . . . ,m−1, x′
m = b, and x′

k = xk−1 for k = m+1, 1, . . . , n+1. In both cases
we have a refinement a = x′

0 < x′
1 < · · · < x′

n′ = c where b = x′
m.

We now have

L((x′
k)

m
k=0) ≤

∫ b

a

f(x) dx ≤ U((x′
k)

m
k=0) ,

L((x′
k)

n′

k=m) ≤
∫ c

b

f(x) dx ≤ U((x′
k)

n′

k=m) ,

and hence

L((xk)
n
k=0) ≤ L((x′

k)
n′

k=0) = L((x′
k)

m
k=0) + L((x′

k)
n′

k=m)

≤
∫ b

a

f(x) dx+

∫ c

b

f(x) dx

≤ U((x′
k)

m
k=0) + U((x′

k)
n′

k=m) = U((x′
k)

n′

k=0) ≤ U((xk)
n
k=0)

As the partition was arbitrary this implies that∫ c

a

f(x) dx = supL ≤
∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ inf U =

∫ c

a

f(x) dx .

The integral of a positive function is positive.

Theorem 2.52. If f : [a, b] → R is continuous and f(x) ≥ 0 for all x ∈ [a, b]

then
∫ b

a
f(x) dx ≥ 0. Furthermore,

∫ b

a
f(x) dx = 0 if and only if f(x) = 0 for all

x ∈ [a, b].
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Proof. If f(x) ≥ 0 for all x ∈ [a, b] then all Riemann sums
∑n

k=1 f(ξk)(xk−xk−1) ≥ 0

and as
∫ b

a
f(x) dx is the limit of Riemann sums it is non negative too.

Suppose f(x0) ̸= 0 for a point x0 ∈ [a, b], then f(x0) > 0. As f is continuous we
can find δ > 0 such that |x − x0| < δ ⇒ |f(x) − f(x0)| < f(x0)

2
. Then |x − x0| <

δ ⇒ f(x) ≥ f(x0)
2

. Hence we can can find a ≤ c < d ≤ b such that f(x) ≥ f(x0)
2

for

all x ∈ [c, d]. As f(x)− f(x0)
2

≥ 0 for all x ∈ [c, d] we have
∫ d

c

(
f(x)− f(x0)

2

)
dx ≥ 0

and then∫ d

c

f(x) dx =

∫ d

c

(
f(x)− f(x0)

2
+

f(x0)

2

)
dx

=

∫ d

c

(
f(x)− f(x0)

2

)
dx+

∫ d

c

f(x0)

2
dx

=

∫ d

c

(
f(x)− f(x0)

2

)
dx+

f(x0)

2
(d− c) ≥ f(x0)

2
(d− c) .

We now have∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ d

c

f(x) dx+

∫ b

d

f(x) dx ≥
∫ d

c

f(x) dx > 0 .

Integration preserves the ordering

Theorem 2.53. If f, g : [a, b] → R are continuous and f(x) ≥ g(x) for all x ∈ [a, b]

then
∫ b

a
f(x) dx ≥

∫ b

a
y(x) dx. Furthermore,

∫ b

a
f(x) dx =

∫ b

a
g(x) dx if and only if

f(x) = g(x) for all x ∈ [a, b].

Proof. Consider the function f − g and use Theorem 2.52.

Remark 2.54. The lower limit is allowed to be larger than the upper limit. If f :
[a, b] → R is continuous then we put

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

We have a mean value theorem for integration:

Theorem 2.55 (Mean value theorem). Let f : [a, b] → R be continuous then there
exist ξ ∈]a, b[ such that

∫ b

a
f(x) dx = f(ξ)(b− a).

Proof. If f is constant the theorem is true for any ξ ∈]a, b[.
Otherwise Theorem 2.9 tells us that f([a, b]) = [c, d] and c < d. Then c(b− 1) <∫ b

a
f(x) dx < d(b− a). So there exist y ∈]c, d[ such that

∫ b

a
f(x) dx = y(b− a).

We can now find x1, x2 ∈ [a, b] such that f(x1) = c and f(x2) = d and then we
can find ξ between x1 and x2 with f(ξ) = y. As c < y < d we must have ξ ̸= x1 and
ξ ̸= x2 so ξ ∈]a, b[.

Remark 2.56. It is easy to see that we can find ξ ∈ [a, b] such that
∫ b

a
f(x) dx =

f(ξ)(b− a). The hard part is to show that we can avoid a and b.
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The integral is a differentiable function of its upper (and lower) limit.

Theorem 2.57. Let f : [a, b] → R be continuous.
The function F : [a, b] → R given by F (t) =

∫ t

a
f(x) dx is differentiable with

derivative F ′(t) = f(t).

Proof. F (t + h) − F (t) =
∫ t+h

a
f(x) dx −

∫ t

a
f(x) dx =

∫ t+h

t
f(x) dx. Given ϵ > 0

choose δ > 0 such that |t − s| < δ ⇒ |f(t) − f(s)| < ϵ. The mean value theorem
above now give us aξ ∈ [t, t + h] such that

∫ t+h

t
f(x) dx = f(ξ)h. We now have∣∣∣F (t+h)−F (t)

h
− f(t)

∣∣∣ = |f(ξ)− f(t)| < ϵ for |h| < δ.

Remark 2.58. We have∫ b

t+h

f(x) dx−
∫ b

t

f(x) dx =

∫ t

t+h

f(x) dx = −
∫ t+h

t

f(x) dx .

So d
dt

∫ b

t
f(x) dx = −f(t).

Definition 2.59. An anti derivative to a function f :]a, b[→ R is a function F :
]a, b[→ R such that F ′(x) = f(x) for all x ∈]a, b[.

Lemma 2.60. If F,G :]a, b[→ R are differentiable and F ′(x) = G′(x) for all x ∈]a, b[
then F −G is constant.

Proof. Let x, y ∈]a, b[ with x < y. As H = F − G is differentiable with derivative
H ′(x) = F ′(x)−G′(x) = 0 the mean value theorem (Theorem 2.27) gives us ξ ∈]x, y[
such that H(y)−H(x) = H ′(ξ)(y−x) = H ′(ξ)(y−x) = 0. That is, H(y) = H(x).

Theorem 2.61 (Fundamental theorem of calculus). If f :]a, b[→ R is continuous
and x0 ∈]a, b[ then all anti derivatives to f is given by

F (x) =

∫ x

x0

f(x) dx+ k .

where k ∈ R is an arbitrary constant.

Proof. By Theorem 2.57 such functions F are indeed anti derivatives and Lemma 2.60
tells that they are the only ones.

Conversely we have

Theorem 2.62. If [a, b] ⊆]c, d[, f : [a, b] → R is continuous, F :]c, d[→ R is
differentiable and F ′ = f then

∫ b

a
f(x) dx = F (b)− F (a).

Proof. If we for x ∈ [a, b] let G(x) =
∫ x

a
f(x) dx then G(x) = F (x) + k for x ∈]a, b[.

As G(a) = 0 we have
∫ x

a
f(x) dx = G(x)−G(a) = F (x)− F (a) for all x ∈]a, b[ and

by continuity we have
∫ b

a
f(x) dx = F (b)− F (a).
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Theorem 2.63. If [a, b] ⊆]c, d[, g :]c, d[→ [a′, b′] is differentiable, and f : [a′, b′] → R
is continuous then ∫ b

a

f(g(t))g′(t) dt =

∫ g(b)

g(a)

f(x) dx .

Proof. If F is an anti derivative of f then d
dt
F (g(t)) = F ′(g(t))g′(t) = f(g(t))g′(t),

i.e., F ◦ g is an anti derivative of (f ◦ g) · g′. Thus∫ b

a

f(g(t))g′(t) dt = F (g(b))− F (g(a)) =

∫ g(b)

g(a)

f(x) dx .

Remark 2.64. Formally we substitute x = g(t) and say dx = dx
dt
dt = g′(t) dt.

2.4 Exercises
Exercise 2.1. Prove Theorem 2.5

Exercise 2.2. Prove Theorem 2.6

Exercise 2.3. Prove Theorem 2.19

Exercise 2.4. Prove Theorem 2.20

Exercise 2.5. Find the 2nd degree Taylor polynomial of cosx and sinx at 0.

Exercise 2.6. Find the 2nd degree Taylor polynomial of expx at 0.

Exercise 2.7. Find the 2nd degree Taylor polynomial of log x at 1 .

Exercise 2.8. Prove Theorem 2.49, i.e., integration is linear in the integrand.

Exercise 2.9. Prove Theorem 2.50, i.e.,
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx .

Exercise 2.10. The hyperbolic cosine and sine are defined by cosh(x) = ex+e−x

2
and

sinh(x) = ex−e−x

2
, respectively. Find their derivatives.
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Chapter 3

Functions of several variables

3.1 Introduction
We will use the euclidean norm to measure distance in Rn, i.e., if x,y ∈ Rn and
x = (x1, . . . , xn) and y = (y1, . . . , yn) are two points in Rn then the distance between
them is

∥x− y∥ =
√

|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xn − yn|2 . (3.1)
Let A ⊆ Rn, a vector function A → Rm is of the form

(x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ,

where f1, . . . , fn are real functions A → R. We can write it more compact as
x 7→ f(x), where x = (x1, . . . , xn) and f = (f1, . . . , fm).
Example 3.1. A quadratic form is a function f : Rn → R of the form

f(x) = xTAx+ bTx+ c , (3.2)

where c ∈ R, b ∈ Rn, A ∈ Rn×n, and we consider elements x ∈ Rn as column
vectors. As xTAx is 1× 1 we have xTAx = (xTAx)T = xTATx and hence

f(x) =
1

2
xT (A+AT )x+ bTx+ c .

As 1
2
(A+AT ) is symmetric we can always assume that A is symmetric.

Example 3.2. If A is symmetric all eigenvalues λk are real and we can find an
orthonormal basis e1, . . . , en for Rn consisting of eigenvectors for A. If x = x1e1 +
· · ·+ xnen and b = b1e1 + · · ·+ bnen then we can write (3.2) as

f(x) = λ1x
2
1 + · · ·+ λnx

2
n + b1x1 + · · ·+ bnxn + c .

If λk ̸= 0 then λkx
2
k + bkxk = λk

(
xk +

bk
2λk

)2
− b2k

4λk
. So by sorting the eigenvalues

properly we can write

f(x) = λ1

(
x1 −

b21
4λ1

)2

+· · ·+λm

(
xm − b2m

4λm

)2

+bm+1xm+1+· · ·+bnxn+C , (3.3)

where λ1, . . . , λm ̸= 0, λm+1, . . . , λn = 0, and C = c− b21
4λ1

− · · · − b2m
4λm

.
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3.1.1 Quadratic forms in the plane

We consider a function f : R2 → R of the form (3.2). We are interested in the level
sets of f , i.e., the solutions to the equation

f(x) = constant . (3.4)

If A = 0 we simply have a linear equation bTx = constant. So we will assume
A ̸= 0.

As we saw in Example 3.1 we may assume that A is symmetric. Then the eigen-
values are real and we can find an orthonormal basis e1, e2 consisting of eigenvectors
of A with eigenvalues λ1 and λ2, respectively. At least one of the eigenvalues are
non zero and we may assume it is λ1 (otherwise exchange e1 and e2). We may also
assume λ1 > 0, otherwise multiply the equation (3.4) by −1 on both sides. There is
a number of different cases:

λ1 > 0, λ2 > 0 : Now A is regular and if we put x0 = −1
2
A−1b, then a direct calcu-

lation shows that

f(x) = (x− x0)
TA(x− x0) + c− xT

0Ax0 .

We can now write x = x0 + xe1 + ye2 and then

f(x) = λ1x
2 + λ2y

2 + c− xT
0Ax0 .

By subtracting c−xT
0Ax0 from both sides of (3.4) we end up with an equation

of the form
λ1x

2 + λ2y
2 = constant . (3.5)

If the constant is negative we have no solutions. If the constant is zero the
solution is a single point x = x0, and if the constant is positive we have an
ellipse, see Figure 3.1 left.

Figure 3.1: Left to right: The case λ1, λ2 > 0, the case λ1 > 0, λ2 < 0, the case
λ1 > 0, λ2 = 0, ⟨b, e2⟩ ≠ 0
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λ1 > 0, λ2 < 0 : The matrix A is still regular and we can repeat the previous argu-
ment. So we still end up with the equation (3.5). But, now we have solutions,
a pair of hyperbolas , for all values of the constant, see Figure 3.1 Riemann.

λ1 > 0, λ2 = 0, ⟨e2, b⟩ ≠ 0 : We can write b = ae1 + be2 where b ̸= 0. We may
assume that b < 0 otherwise replace e2 with −e2. By multiplying the equation
(3.4) by 1

|b| on both sides we may furthermore assume that b = −1. If we write

x =
(
x+ a

2λ1

)
e1 + ye2 then we have

f(x) = λ1x
2 − y + c− a2

4λ1

.

By subtracting c− a2

4λ1
from both sides of (3.4) we end up with an equation of

the form
λ1x

2 − y = constant .

The solutions are parabolas , y = λ1x
2 − constant, see Figure 3.1 right.

λ1 > 0, λ2 = 0, ⟨e2, b⟩ = 0 : Now b = ae1 and if we write x =
(
x+ a

2λ1

)
e1 + ye2

then we have f(x) = λ1x
2 + c − a2

4λ1
. By subtracting c − a2

4λ1
from both sides

of (3.4) we end up with an equation of the form

λ1x
2 = constant .

If the constant is negative there are no solutions. If the constant is zero the
solution is a line given by x = 0 and if the constant is negative the solution is
two parallel lines given by x = ±

√
constant

λ1
.

3.2 Continuity
The definition of continuity for vector functions of several variables is the same as
for functions of one variable

Definition 3.1. Let A ⊆ Rn and x0 ∈ A. A vector function f : A → Rm is called
continuous at a point x0 if we for all positive numbers ϵ can find a positive number
δ such that if x ∈ A and ∥x − x0| < δ then ∥f(x) − f(x0)∥ < ϵ. With logical
symbols this can be written

∀ϵ > 0 ∃δ > 0∀x ∈ A : ∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ < ϵ . (3.6)

If f is continuous at all point x ∈ A then f is called continuous . With logical
symbols this can be written

∀y ∈ A∀ϵ > 0 ∃δ > 0∀x ∈ A : ∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ < ϵ . (3.7)
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CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.2. CONTINUITY

Remark 3.2. The continuity condition is often written as

f(x) → f(x0) for x → x0 . (3.8)

Example 3.3. Let A be an m × n matrix. The linear function L : Rn → Rm given

by L(x) = Ax is continuous in all points x0 ∈ Rn. Indeed, if A =

( a1,1 ... a1,n

...
...

am,1 ... am,n

)
then we let c = max{|ak,ℓ|}. If y = Ax we have

|yk| = |ak,1x1 + · · ·+ ak,nxn| ≤ |ak,1||x1|+ · · ·+ |ak,n||xn| ≤ cn∥x∥ ,

and hence

∥y∥ =
√

|y1|2 + · · ·+ |ym|2 ≤
√
m(cn∥x∥)2 =

√
mnc∥x∥ .

So if ϵ > 0, 0 < δ ≤ ϵ√
mnc

, and ∥x− x0∥ < δ then

∥Ax−Ax0∥ = ∥A(x− x0)∥ ≤
√
mnc∥x− x0∥ <

√
mncδ ≤ ϵ .

Example 3.4. A quadratic function (3.2) is continuous. We will later see that a
differentiable function is continuous (Theorem 3.17) and a quadratic function is
differentiable (Example 3.6). So we will not show it now.

The following four lemmas give other examples of continuous functions

Lemma 3.3 (Projection on the kth coordinate). Let k ∈ {1, 2, . . . , n}. The function
Pk : Rn → R : (x1, . . . , xn) 7→ xk is continuous at all points y = (y1, . . . , yn) ∈ Rn.

Proof. We have

|Pk(x)− Pk(y)| = |xk − yk| =
√

(xk − yk)2

≤
√

(x1 − y1)2 + · · ·+ (xn − yn)2 = ∥x− y∥ .

If ϵ > 0 and 0 < δ ≤ ϵ then ∥x− x0∥ < δ ⇒ |Pk(x)− Pk(x0)| < ϵ.

Lemma 3.4 (Diagonal). The vector function diag : Rn → R2n : x 7→ (x,x) is
continuous at all points x ∈ Rn.

Proof. Given x0 ∈ Rn and ϵ > 0 we put δ = 1
2
ϵ. If x ∈ Rn and ∥x− x0∥ < δ then

∥(x,x)− (x0,x0)∥ = ∥(x− x0,x− x0)∥

=
√
∥x− x0∥2 + ∥x− x0∥2 <

√
δ2 + δ2 =

√
2δ =

√
2

2
ϵ < ϵ .

Lemma 3.5. Addition add : R2n = Rn × Rn → Rn : (x,y) 7→ x + y is continuous
at all points (x,y) ∈ R2n.
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Proof. Given (x0,y0) ∈ R2n and ϵ > 0 we put δ = 1
2
ϵ. If (x,y) ∈ R2n and ∥(x,y)−

(x0,y0)∥ < δ then ∥x− x0∥ < δ and ∥y − y0∥ < δ. Hence

∥x+ y − (x0 + y0)∥ = ∥x− x0 + y − y0∥
≤ ∥x− x0∥+ ∥y − y0∥ < δ + δ = ϵ .

Lemma 3.6. Multiplication mult : R2 → R : (x, y) 7→ xy is continuous at all points
(x, y) ∈ R2.

Proof. Given x0 = (x0, y0) and ϵ > 0. Put δ = min
{
1, ϵ

2+2|x0| ,
ϵ

2+2|y0|

}
. If x = (x, y)

and x0 − x∥ < δ then |x− x0| < δ, y − y0 < δ, and |x| ≤ 1 + |x0|. Hence

|xy − x0y0| = |xy − xy0 + xy0 − x0y0| = |x(y − y0) + (x− x0)y0|
≤ |x(y − y0)|+ |(x− x0)y0| < |x|δ + δ|y0|

≤ (1 + |x0|)
ϵ

2 + 2|x0|
+

ϵ

2 + 2|y0|
|y0| ≤

ϵ

2
+

ϵ

2
= ϵ .

Lemma 3.7. Let A ⊆ Rn, let B ⊆ Rm, let f : A → Rk, let g : B → Rℓ. If
f is continuous at a point x0 ∈ A and g is continuous at the point y0 ∈ B then
(f , g) : A×B → Rk+ℓ(x,y) 7→ (f(x), g(y)) is continuous at (x0,y0).

Proof. Given ϵ > 0. Choose δ1 > 0 such that ∥x − x0∥ < δ1 ⇒ ∥f(x) − f(x0∥ <
ϵ/2 and choose δ2 > 0 such that ∥y − y0∥ < δ2 ⇒ ∥g(y) − g(y0∥ < ϵ/2. Put
δ = min{δ1, δ2}. We have ∥(x,y)∥ =

√
∥x∥2 + ∥y∥2 so if ∥(x,y) − (x0,y0)∥ < δ

then ∥x − x0∥, ∥y − y0∥ < δ and ∥x − x0∥ < δ1 and ∥y − y0∥ < δ2. Hence
∥f(x)− f(x0)∥ < ϵ/2 and ∥g(y)− g(g0)∥ < ϵ/2. Finally

∥(f(x), g(y))− (f(x0), g(y0))∥ = ∥(f(x)− f(x0), g(y)− g(y0))∥

=
√

∥f(x)− f(x0)∥2 + ∥g(y)− g(y0)∥2 <
√

ϵ2

4
+

ϵ2

4
=

√
ϵ2

2
< ϵ .

Composition of continuous functions are continuous:

Theorem 3.8. Let A ⊆ Rn, let B ⊆ Rm, let f : A → Rm, let g : B → Rk, and
assume that f(A) ⊆ B. If f is continuous at a point x0 ∈ A and g is continuous at
the point y0 = f(x0) then g ◦ f is continuous at x0.

Proof. Given ϵ > 0. As g is continuous at y0 we can choose δ1 > 0 such that
∥y−y0∥ < δ1 ⇒ ∥g(y)− g(y0)∥ < ϵ. As f is continuous at x0 we can choose δ > 0
such that ∥x− x0∥ < δ ⇒ ∥f(x)− f(x0)∥ < δ1. But then ∥g(f(x0))− g(f(x)) =
∥g(y0)− g(f(x))∥ < ϵ

Continuity is preserved by the usual arithmetic operations:

Theorem 3.9. If x0 ∈ A and f : A → Rm and g : A → Rm are continuous in x0

then
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1. f + g : A → R : x 7→ f(x) + g(x) is continuous in x0.

If x0 ∈ A and f : A → R and g : A → R are continuous in x0 then

2. fg : A → R : x 7→ f(x)g(x) is continuous in x0.

If x0 ∈ A ⊆ Rn, f : A → R, f(x) ̸= 0 for all x ∈ A, and f is continuous in x0 then

3. 1
f
: A → R : x 7→ 1

f(x)
is continuous in x0.

Proof of 1. We can write the vector function f + g as the composition:

x
diag7−→ (x,x)

(f ,g)7−→ (f(x), g(x))
add7−→ f(x) + g(x) ,

By Lemma 3.4, Lemma 3.7, and Lemma 3.5 these three vector functions are con-
tinuous. By Theorem 3.8 the composition f + g = add ◦(f , g) ◦ diag is continuous
too.

Proof of 2. We can write the function fg as the composition:

x
diag7−→ (x,x)

(f,g)7−→ (f(x), g(x))
mult7−→ f(x)g(x) ,

By Lemma 3.4, Lemma 3.7, and Lemma 3.6 these three vector functions are con-
tinuous. By Theorem 3.8 the composition fg = mult ◦(f, g) ◦ diag is continuous
too.

Proof of 3. We can write the function 1/f as the composition:

x
f7−→ f(x)

inv7−→ 1

f(x)
,

where the last map is continuous by Lemma 2.4.

We can check continuity of a vector function by looking at each coordinate sep-
arately:

Theorem 3.10. A vector function f = (f1, . . . , fm) : A → Rm is continuous at x0

if and only if all the functions fk : A → R, k = 1, . . . ,m are continuous at x0.

Proof. We can write the coordinate function fk as the composition fk = Pk ◦ f
so if f is continuous at x0 then so is fk. Conversely, assume all the coordinate
functions fk are continuous at x0 and we are given an ϵ > 0. For each functions
fk we can find a δk > 0 such that ∥x − x0∥ < δk ⇒ |fk(x) − fk(x0)| < ϵ/m. We
now put δ = min{δ1, . . . , δm}. If ∥x − x0∥ < δ then |fk(x) − fk(x0)| < ϵ/m for all
k = 1, . . . ,m and hence

∥f(x)− f(x0)∥ =
√

|f1(x)− f1(x0)|2 + · · ·+ |fm(x)− fm(x0)|2

<

√
m
( ϵ

m

)2
=

ϵ√
m

< ϵ .
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3.3 Differentiability
Before we can define differentiability of vector functions f : Rn → Rm we need the
concepts of open sets , (an analogue of open intervals).

Definition 3.11. The open ball in Rn with centre x and radius r is the subset
B(x, r) consisting of points with a distance to x that is strictly smaller than r, i.e.,

B(x, r) = {y ∈ Rn | ∥y − x∥ < r} , (3.9)

see Figure 3.2.

Definition 3.12. A subset U ⊆ Rn is called open if there for every point x ∈ U
exists an open ball with centre x contained in U . That is

∀x ∈ U ∃r > 0 : B(x, r) ⊆ U .

Loosely speaking: If we are in U then we can move a little bit in all direction
and stay inside U , see Figure 3.2.
Example 3.5. An open ball is an open set. Indeed, consider x ∈ B(x0, r) put
ϵ = r − ∥x − x0∥. As ∥x − x0∥ < r, we have ϵ > 0. We want to show that
B(x, ϵ) ⊂ B(x0, r). Given y ∈ B(x, ϵ), i.e., ∥y − x∥ < ϵ. Then

∥y − x0∥ = ∥y − x = x− x0∥ ≤ ∥y − xx∥+ ∥x− x0∥
< ϵ+ ∥x− x0∥ = r − ∥x− x0∥+ ∥x− x0∥ = r ,

and y ∈ B(x0, r). The closed ball {y ∈ Rn | ∥y−x∥ ≤ r} is not open, see Figure 3.2,
right. If x is on the boundary then, no matter how small ϵ is, a ball with centre x

Figure 3.2: To the left an open set, in the middle an open ball, and to the right a
closed ball.

and radius ϵ contains outside points.
Now we can define differentiability of vector functions:

Definition 3.13. Let U ⊆ Rn be an open set. A vector function f : U → Rm is
called differentiable at a point x ∈ U if there exists a linear map L : Rn → Rm such
that

∥f(x+ h)− f(x)− L(h)∥
∥h∥

→ 0 , for h → 0 . (3.10)
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Compare with (2.8). If B(x, r) ⊆ U we can write this as

∀ϵ > 0 ∃δ ∈]0, r]∀h ̸= 0 : ∥h∥ < δ =⇒ ∥f(x+ h)− f(x)− L(h)∥
∥h∥

< ϵ .

The map L is called the differential of f at x and is denoted dfx. From Lemma
10.28 in [1] we know that L is of the form L(h) = Jh where J ∈ Rm×n is a unique
matrix called the Jacobian matrix.

If we put

ϵ(h) =
f(x+ h)− f(x0)− L(h)

∥h∥
, (3.11)

then (3.10) says that ϵ(h) → 0 for h → 0 and we have the following generalisation
of (2.10):

f(x+ h) = f(x) + L(h) + ϵ(h)∥h∥ . (3.12)

In terms of the Jacobian matrix (3.12) becomes

f(x+ h) = f(x) + Jh+ ϵ(h)∥h∥ , (3.13)

and we see that for small h we can approximate f(x+h) by a first degree polynomial
(in n variables) and the error goes to zero faster than ∥h∥.

Any linear map L : R → Rm can be written as L(t) = tL(1). That leads us to
the following definition

Definition 3.14. Let I ⊆ R be an open interval and let f : I → Rm be a vector
function. If f is differentiable in x ∈ I then we define f ′(x) ∈ Rm by f ′(x) = dfx(1).
Then the differential dfx : R → Rm can be written as t 7→ tf ′(x). If we consider
the elements of Rn as column vectors then the Jacobian matrix is J(x) = f ′(x).

Lemma 3.15. If f : I → Rm is differentiable in x ∈ I then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (3.14)

Proof. This is a straight forward calculation. If h ̸= 0 then∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ = ∣∣∣∣f(x+ h)− f(x)− f ′(x)h

h

∣∣∣∣
=

|f(x+ h)− f(x)− f ′(x)h|
|h|

→ 0 for h → 0 .

A linear map is differentiable:

Lemma 3.16. If L : Rn → Rm is linear then it is differentiable at all points x ∈ Rn

and the differential is dLx = L.

Proof. If h ̸= 0 then ∥L(x+h)−L(x)−L(h)∥
∥h∥ = 0 .
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Example 3.6. Let A ∈ Rn×n, b ∈ R1×n, and c ∈ R. A quadratic function f(x) =
xTAx+ bx+ c is differentiable at all points x ∈ Rn and the differential is given by
dfx(h) = xT (A+AT )h+ bh. Indeed

|f(x+ h)− f(x)− (xT (A+AT )h+ bh)|
∥h∥

=

|(x+ h)TA(x+ h) + b(x+ h) + c− xTAx− bx− c− xT (A+AT )h+ bh|
∥h∥

=
|hTAx+ hTAh− xTATh|

∥h∥
=

|hTAh|
∥h∥

≤ ∥hT∥∥Ah∥
∥h∥

= ∥Ah∥ → 0 ,

for h → 0. Where we at the end used that hTAx is a number and hence hTAx =
(hTAx)T = xTATh, that a linear map is continuous and also Cauchy-Schwartz’s
inequality (|xTy| ≤ ∥x∥∥y∥). If A is symmetric the differential simplifies to
dfx(h) = 2xTAh+ bh.

Just as in the case of functions of one variable, differentiability implies continuity:

Theorem 3.17. Let U ⊆ Rn be an open set, let f : U → Rm be a vector function
that is differentiable at a point x ∈ U . Then f is continuous at x.

Proof. Let dfx be the differential of f at x0 and choose C ≥ 0 such that ∥dfx(h)∥ <
C∥h∥ for all h ∈ Rn. If ϵ > 0 then we can choose 0 < δ0 such that if ∥h∥ < δ0 then
x+ h ∈ U and ∥f(x+h)−f(x)−Ch∥

∥h∥ < 1
2
ϵ. Put δ = min{δ0, ϵ

2C
}. If ∥h∥ < δ then

∥f(x+ h)− f(x)∥ = ∥f(x+ h)− f(x)− dfx(h) + dfx(h)∥
≤ ∥f(x+ h)− f(x)− dfx(h)∥+ ∥dfx(h)∥

<
ϵ

2
+ C∥h∥ <

ϵ

2
+ C

ϵ

2C
= ϵ .

Let v ∈ Rn be a vector and consider the line x + tv. For small t we have
x+ tv ∈ U and we can look at the restriction of f to these points.

Theorem 3.18. Let U ⊆ Rn be an open set, let f : U → Rm be a vector function
that is differentiable at a point x ∈ U , and let v ∈ Rn. Then

1. There exists an r > 0 such that x+ tv ∈ U for all t ∈]− r, r[.

2. The vector function fv :]− r, r[→ Rm : t 7→ f(x+ tv) is differentiable at t = 0
and the derivative is f ′

v(0) = dfx(v).

The derivative of fv is called the directional derivative in the direction v and is
denoted ∂vf(x). That is ∂vf(x) = dfx(v).

Proof. If v = 0 then x + tv = x ∈ U for all t so r can be anything. Also fv is
constant and f ′

0(0) = 0 = dfx(0). So assume v ̸= 0. As U is open we can find an
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open ball B(x, r0) ⊆ U if we put r = r0
∥v∥ then we have |t| < r ⇒ ∥x + tv − x∥ =

∥tv∥ = |t|∥v∥ < r∥v∥ = r0. This proves 1. We now have

∥fv(t)− fv(0)− dfx(v)t∥
|t|

=
∥f(x+ tv)− f(x)− dfx(tv)∥

∥tv∥|
∥v∥ → 0∥v∥ = 0 ,

for t → 0. This proves 2.

In other words, the directional derivative is given by

∂vf =
d

dt
f(x0 + tv)

∣∣∣∣
t=0

. (3.15)

If we let v be one one of the basis vectors e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)
then we obtain the partial derivatives :

Definition 3.19. The kth partial derivative at x is

∂f

∂xk

= ∂ekf =
d

dt
f(x+ tek)

∣∣∣∣
t=0

=
d

dt
f(x1, . . . , xk + t, . . . , xn)

∣∣∣∣
t=0

. (3.16)

Definition 3.20. Let U ⊆ Rn be an open set. A vector function f : U → Rm is
called differentiable if it is differentiable at all points x ∈ U . The differential at x is
denoted dfx and is a linear map Rn → Rm. The differential df can be considered
as a map U → Rm×n : x → dfx and if it is continuous then f is called a C1 vector
function.

If I is an open interval and a function f : I → R is differentiable with zero
derivative f ′ = 0 then Corollary 2.30 tells us that f is constant. The same is true
in higher dimensions.

Lemma 3.21. If B(x0, r) ⊆ Rn is an open ball and a vector function f : B(x0, r) →
Rm is differentiable with zero differential: dfx(v) = 0 for all v ∈ Rn and x ∈
B(x0, r) then f is constant.

Proof. If x ∈ B(x0, r) and h = x− x0 then the vector function g : t 7→ f(x0 + th)
has derivative g′(t) = ∂hf(x0+h) = dfx0+hh = 0. Hence each coordinate function
is constant, so g is constant, and f(x) = g(1) = g(0) = f(x0). Hence f is constant
too.

We have seen that if a vector function is differentiable then the partial derivatives
exists. The converse is not true, see Example 3.7, 3.8, and 3.9 below. But if the
partial derivatives exists and are continuous we do have differentiability:

Theorem 3.22. Let U ⊆ Rn be an open set and let f be a vector function U →
Rm. If the partial derivatives ∂f

∂xk
exist at all points and are continuous then f is
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differentiable and the differential is given by dfxv = Jv where J is the Jacobian
matrix

J =

(
∂f

∂x1

(x) . . .
∂f

∂xn

(x)

)
,

and we consider the partial derivatives ∂f
∂xk

(x) as column vectors. Furthermore,
considered as a map df : U → Rm×n : x → dfx the differential is continuous , i.e.,
f is a C1 vector function.

Proof. Assume the partial derivatives exist and are continuous and let x ∈ U . We
want to show that f is differentiable in x. First we choose r > 0 such that B(x, r) ⊆
U . For h ∈ R with ∥h∥ < r and for k = 0, 1, . . . , n we put xk = x+

∑k
j=1 x+ hjej,

where e1, . . . , en is the standard basis in Rn and h = (h1, . . . , hn). Then x0 = x and
x + h = xn. Using the mean value theorem on the function t 7→ f(xk−1 + thkek)
we have

f(x+ h)− f(x) = f(xn)− f(x0)

=
n∑

k=1

(f(xk)− f(xk−1)) =
n∑

k=1

∂f

∂xk

(xk−1 + ξkhkek)hk ,

where ξk ∈]0, 1[. Then

f(x+ h)− f(x)− Jh =
n∑

k=1

(
∂f

∂xk

(xk−1 + ξkhkek)−
∂f

∂xk

(x)

)
hk ,

and

∥f(x+ h)− f(x)− Jh∥
∥h∥

=
n∑

k=1

∥∥∥∥ ∂f∂xk

(xk−1 + ξkhkek)−
∂f

∂xk

(x)

∥∥∥∥ |hk|
∥h∥

≤
n∑

k=1

∥∥∥∥ ∂f∂xk

(xk−1 + ξkhkek)−
∂f

∂xk

(x)

∥∥∥∥ .

We need to show that this goes to zero as h goes to zero. Given ϵ > 0 we can
choose δk ∈]0, r[ such that h < δk ⇒

∥∥∥ ∂f
∂xk

(x+ h)− ∂f
∂xk

(x)
∥∥∥ < ϵ/n. We now put

δ = min{δ1, . . . , δn}. As ∥ξkhkek∥ = |ξhk| ≤ hk ≤ ∥h∥ we see that if ∥h∥ < δb then

∥f(x+ h)− f(x)− Jh∥
∥h∥

≤
n∑

k=1

∥∥∥∥ ∂f∂xk

(xk−1 + ξkhkek)−
∂f

∂xk

(x)

∥∥∥∥ < ϵ .

So f is differentiable at all x ∈ U and dfx = J(x). The entries in J are the partial
derivatives of the coordinate functions of f which are assumed to be continuous so
df is continuous.

The following examples show that the existence of all partial derivatives or all
directional derivatives does not guarantee differentiability:
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Figure 3.3: From left to right: Example 3.7, 3.8, and 3.9.

Example 3.7. Let f : R2 → R be defined by

f(x, y) =

{
2xy

x2+y2
for (x, y) ̸= (0, 0) ,

0 for (x, y) = (0, 0) ,

If t ̸= 0 then

f(t, 0)− f(0, 0)

t
= 0 , and

f(0, t)− f(0, 0)

t
= 0 .

So both partial derivative exists at (x, y) = (0, 0) (and ∂f
∂x
(0, 0) = ∂f

∂y
(0, 0) = 0). If

t ̸= 0 then f(t, t) = 2tt
t2+t2

= 1. So f is discontinuous at (0, 0) and consequently not
differentiable, see Figure 3.3 left.

Example 3.8. Let f : R2 → R be defined by

f(x, y) =


x y2

x2 + y2
for (x, y) ̸= (0, 0) ,

0 for (x, y) = (0, 0) .

Now f is continuous at (0, 0): If (x, y) ̸= (0, 0) then we can write (x, y) = (r cos θ, r sin θ)
(polar coordinates) and then we have

|f(x, y)− f(0, 0)| =
∣∣∣∣ r cos θr2 sin2 θ

r2 cos2 θ + r2 sin2 θ

∣∣∣∣ = |r cos θ sin2 θ| ≤ |r| → 0 ,

for (x, y) → (0, 0). We also have a directional derivative in all directions: If (v, w) ̸=
(0, 0) and t ̸= 0 then

|f(tv, tw)− f(0, 0)− vw2t|
|t|

=

∣∣∣ tvt2w2

t2v2+t2w2 − vw2

v2+w2 t
∣∣∣

|t|
= 0 ,

so ∂(v,w)f = vw2

v2+w2 . But the map (v, w) 7→ ∂(v,w)f = vw2

v2+w2 is not linear so f is not
differentiable, see the middle picture in Figure 3.3.
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Example 3.9. Let f : R2 → R be defined by

f(x, y) =


x3 y

x4 + y2
for (x, y) ̸= (0, 0) ,

0 for (x, y) = (0, 0) .

Again f is continuous at (0, 0): If (x, y) ̸= (0, 0) then we can write (x, y) =
(
√
vt, wt2), where v ≥ 0 and v2 + w2 = 1. Then v, |w| ≤ 1 and if |t| < 1 we

have x2 + y2 = vt2 + w2t4 ≥ v2t2 + w2t2 = t2 , i.e., |t| ≤ ∥(x, y)∥. Furthermore,

|f(x, y)− f(0, 0)| =
∣∣∣∣ x3y

x4 + y2

∣∣∣∣ = ∣∣∣∣ v√vt3wt2

v2t4 + w2t4

∣∣∣∣ = ∣∣∣∣ v√vwt

v2 + w2

∣∣∣∣
= v

√
v|w||t| ≤ |t| = ∥(x, y)∥ → 0 for (x, y) → (0, 0) .

We also have a directional derivative in all directions: If (v, w) ̸= (0, 0) and t ̸= 0
then

f(vt, wt)− f(0, 0)

t
=

v3t3wt

v4t5 + w2t3
=

v3wt

v4t2 + w2
→ 0 for t → 0 .

So ∂(v,w)f = 0. We see that the map (v, w) 7→ ∂(v,w)f = 0 is linear, see Figure 3.3
right. If f were differentiable at (0, 0) then the differential df(0,0) would be the zero
map. But, if h = (t, t2) and t ̸= 0 then

|f(0+ h)− f(0)− 0h|
∥h∥

=
|t3t2|

(t4 + t4)
√
t2 + t4

=
1

2
√
1 + t2

−→
t→0

1

2
.

So f is not differentiable (the limit should be 0).

As the projection Pk : Rn → R : (x1, . . . , xn) 7→ xk, the diagonal map diag :
Rn → R2n : x 7→ (x,x), and addition add : R2n = Rn × Rn → Rn : (x,y) 7→ x + y
all are linear maps Lemma 3.16 immediately give us

Corollary 3.23 (Projection on the kth coordinate). Let k ∈ {1, 2, . . . , n}. The func-
tion Pk : Rn → R : (x1, . . . , xn) 7→ xk is differentiable at all points y = (y1, . . . , yn) ∈
Rn and the differential is Pk.

Corollary 3.24 (Diagonal). The vector function diag : Rn → R2n : x 7→ (x,x)
is differentiable at all points x ∈ Rn and the differential is diag with matrix

(
In
In

)
,

where In is the n× n identity matrix

Corollary 3.25. Addition add : R2n = Rn ×Rn → Rn : (x,y) 7→ x+ y is differen-
tiable at all points (x,y) ∈ R2n and the differential is add with matrix ( In In ) .

We also have

Lemma 3.26. Multiplication mult : R2 → R : (x, y) 7→ xy is differentiable at all
points (x, y) ∈ R2 and the differential dmult(x,y) has matrix ( y x ) .
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Proof. The partial derivatives are ∂mult
∂x

= y and ∂mult
∂y

= x. We see they are contin-
uous so by Theorem 3.22 mult is differentiable and the differential has the matrix
( ∂ mult

∂x
∂ mult

∂y ) = ( y x ) .

Finally we have

Lemma 3.27. Let U ⊆ Rn, let V ⊆ Rm be open sets, let f : U → Rk, let g : V →
Rℓ. If f is differentiable at a point x ∈ U and g is differentiable at the point y ∈ V
then (f , g) : U × V → Rk+ℓ(v,w) 7→ (f(v), g(w)) is differentiable at (x,y) with
differential d(f , g)(x,y) = (dfx, dgy). If dfx has the matrix A ∈ Rn×k and dgy has
the matrix B ∈ Rm×ℓ then d(f , g)(x,y) has matrix (A 0

0 B ) .

Proof. If we for a pair (h,k) ∈ Rn × Rm have that (x+ h,y + k) ∈ U × V then∥∥∥∥(f(x0 + h)
g(y0 + k)

)
−
(
f(x0)
g(y0))

)
−
(
A 0
0 B

)(
h
k

)∥∥∥∥
∥(h,k)∥

=

√
∥f(x0 + h)− f(x0)−Ah∥2 + ∥g(y0 + k)− g(y0)−Bk∥2√

∥h∥2 + ∥k∥2

≤ ∥f(x0 + h)− f(x0)−Ah∥+ ∥g(y0 + k)− g(y0)−Bk∥√
∥h∥2 + ∥k∥2

=
∥f(x0 + h)− f(x0)−Ah∥√

∥h∥2 + ∥k∥2
+

∥g(y0 + k)− g(y0)−Bk∥√
∥h∥2 + ∥k∥2

→ 0 ,

for (h,k) → (0,0).

The composition of differentiable vector functions is differentiable:

Theorem 3.28. If U ⊆ Rn and V ⊆ Rm are open sets, f : U → Rm and g : V → Rk

are vector functions such that f(U) ⊂ V , f is differentiable in x ∈ U and g is
differentiable in y = f(x0). Then g ◦ f : U → Rk is differentiable in x with
differential d(g ◦ f)x = dgy ◦ dfx.

Proof. For an h ∈ Rn with x0 + h ∈ U we put

ϵ1(h) =
f(x+ h)− f(x)− dfx(h)

∥h∥
.

Then ∥ϵ1(h)∥ → 0 for h → 0 and f(x+ h) = f(x) + dfx(h) + ∥h∥ϵ1(h). Similar,
for a k ∈ Rm with y + k ∈ V we put

ϵ2(k) =
g(y0 + k)− g(y0)− dgy(k)

∥k∥
,
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and then ∥ϵ2(k)∥ → 0 for k → 0 and g(y + k) = g(x) + dgy(k) + ∥k∥ϵ2(k). If we
let k = dfx(h) + ∥h∥ϵ1(h) then k → 0 for h → 0 and we have

∥g(f(x+ h))− g(f(x))− dgy(dfx(h))∥
∥h∥

=

∥∥∥∥g(f(x) + dfx(h) + ∥h∥ϵ1(h))− g(f(x))− dgy(dfx(h))

∥h∥

∥∥∥∥
=

∥∥∥∥∥g(f(x) + k)− g(f(x))− dgy(k − ∥h∥ϵ1(h))
∥h∥

∥∥∥∥
=

∥∥∥∥g(f(x0) + k)− g(f(x0))− dgy(k)

∥h∥
+

dgy(∥h∥ϵ1(h))
∥h∥

∥∥∥∥
= ∥ϵ2(k) + dgy(ϵ1(h))∥ → 0 for h → 0 .

Example 3.10. Let U ⊆ R2 and let f : U → R be differentiable. If (x, y) ∈ U and
(x+ tv, y + tw) ∈ U for all t ∈ [0, 1] then we have

df

dt
(x+ tv, y + tw) = v

∂f

∂x
(x+ tv, y + tw) + w

∂f

∂y
(x+ tv, y + tw) ,

or short df
dt

= v ∂f
∂x

+ w ∂f
∂y

.

Example 3.11. Let U ⊆ Rn and let f : U → R be differentiable. If x ∈ U and
x+ th ∈ U for all t ∈ [0, 1] then we have

df

dt
(x+ th) =

∂f

∂x1

(x+ th)h1 + · · ·+ ∂f

∂xn

(x+ th)hn ,

where h = (h1, . . . , hn). Short df
dt

=
∑n

i=1
∂f
∂xi

hi.

Just like continuity, differentiability is preserved by the usual arithmetic opera-
tions:

Theorem 3.29. If x ∈ U and f : U → Rm and g : U → Rm are differentiable in x
then

1. f + g : A → R : v 7→ f(v) + g(v) is differentiable in x with differential
d(f + g)x = d(f + g)x = dfx + dgx.

If x ∈ U and f : U → R and g : U → R are differentiable in x then

2. fg : U → R : v 7→ f(v)g(v) is differentiable in x with differential d(fg)x =
g(x)dfx + f(x)dgx.

If U ⊆ Rn, f : U → R, f(v) ̸= 0 for all v ∈ A, and f is differentiable in x ∈ U
then

3. 1
f
: U → R : v 7→ 1

f(v)
is differentiable in x with differential −f(x)−2dfx.
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Proof of 1. We can write the vector function f + g as the composition:

v
diag7−→ (v,v)

(f ,g)7−→ (f(v), g(v))
add7−→ f(v) + g(v) ,

By Corollary 3.24, Lemma 3.27, and corollary 3.25 these three vector functions
are continuous. By Theorem 3.28 the composition f + g = add ◦(f , g) ◦ diag is
differentiable too and the differential is

d(f + g)x0 = add ◦(dfx, dgx) ◦ diag = dfx + dgx .

Proof of 2. We can write the function fg as the composition:

v
diag7−→ (v,v)

(f,g)7−→ (f(v), g(v))
mult7−→ f(v)g(v) ,

By Corollary 3.24, Lemma 3.27, and Lemma 3.26 these three vector functions are
differentiable. By Theorem 3.8 the composition fg = mult ◦(f, g) ◦ diag is differen-
tiable too and the differential is

d(f + g)x0 = dmult(f(x),g(x)) ◦(dfx, dgx) ◦ diag = g(x)dfx + f(x)dgx .

Proof of 3. We can write the function 1/f as the composition:

v
f7−→ f(v)

inv7−→ 1

f(v)
,

where the last map is differentiable by Lemma 2.18. By Theorem 3.8 the composition
is differentiable too and the differential is

d

(
1

f

)
x

= d invf(x) ◦dfx =
−dfx
f(x)2

.

Just as in the case of functions of one variable we can define higher order differ-
entiability recursively:

Definition 3.30. Let U ⊆ Rn be an open set. A vector function f : U → Rm is k
times differentiable if f is differentiable and the differential considered as a function
df : U → Rm×n is k−1 times differentiable. If the kth derivative is continuous then
f is called a Ck function If f is a Ck function for all k ∈ N then f is called a C∞

function

In terms of the partial derivatives we have

Theorem 3.31. Let U ⊆ Rn be an open set. A vector function f : U → Rm is a
Ck vector function if and only if all partial derivatives up to order k exists and are
continuous.
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Proof. If f is a Ck vector function then is clear that the partial derivatives of order
k exists and are continuous.

We need to show that if all partial derivatives of order k exists and are continuous
then we have a Ck function. We prove it by induction on the order k. The case
k = 1 is Theorem 3.22. So now assume that the theorem is true for a k ∈ N and that
f is a function where all partial derivatives of order k + 1 exist and are continuous.
As k ≥ 1 Theorem 3.22 shows that f is a C1 function, so df : U → Rm×n exists
and are continuous. As all partial derivatives of f up to order k + 1 exist and are
continuous, all partial derivatives of df up to order k exist and are continuous. So
by the induction hypothesis df is a Ck vector function, but that mean by definition
that f is a Ck+1 vector function.

If f is a Ck vector function then the order of differentiation does not matter.
We first consider a function of two variables.

Lemma 3.32. If U ⊆ R2 is a open set and f : U → R is a C2 function, then
∂2f
∂x∂y

= ∂2f
∂y∂x

.

Proof. Consider a rectangle [a, b]× [c, d] ⊆ U and the function

g1(x) = f(x, d)− f(x, c) , x ∈ [a, b] .

We have
g1(b)− g1(a) = f(b, d)− f(b, c)− f(a, d) + f(a, c) .

The function g1 is C2 with derivative g′1(x) =
∂f
∂x
(x, d) − ∂f

∂x
(x, c). The mean value

theorem gives us a ξ1 ∈ [a, b] such that g1(b)− g1(a) = g′1(ξ1)(b− a) and hence(
∂f

∂x
(ξ1, d)−

∂f

∂x
(ξ1, c)

)
(b− a) = f(b, d)− f(b, c)− f(a, d) + f(a, c) .

Next we consider the function

h1(y) =
∂f

∂x
(ξ1, y) , y ∈ [c, d] .

The function h1 is C1 with derivative ∂2f
∂y∂x

(ξ1, y) and the mean value theorem gives
us η1 ∈ [c, d] such that ∂f

∂x
(ξ1, d)− ∂f

∂x
(ξ1, c) =

∂2f
∂y∂x

(ξ1, η1)(d− c). We now have

∂2f

∂y∂x
(ξ1, η1)(d− c)(b− a) = f(b, d)− f(b, c)− f(a, d) + f(a, c) . (∗)

If we instead start with the function

g2(y) = f(b, y)− f(a, y) , y ∈ [c, d] .

We have
g2(d)− g2(c) = f(b, d)− f(a, d)− f(b, c) + f(a, c) ,
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the same expression as for g1(b) − g1(a). The function g2 is C2 with derivative
g′2(y) =

∂f
∂y
(b, y)− ∂f

∂y
(a, y). The mean value theorem gives us a η2 ∈ [c, d] such that

g2(d)− g1(c) = g′2(η2)(d− c) and hence(
∂f

∂y
(b, η2)−

∂f

∂y
(a, η2)

)
(d− c) = f(b, d)− f(b, c)− f(a, d) + f(a, c) .

Continuing as before we look at the function

h2(x) =
∂f

∂y
(x, η2) , x ∈ [a, b] .

The function h2 is C1 with derivative ∂2f
∂x∂y

(x, η2) and the mean value theorem gives
us ξ2 ∈ [a, b] such that ∂f

∂y
(b, η2)− ∂f

∂y
(a, η2) =

∂2f
∂x∂y

(ξ2, η2)(b− a). We now have

∂2f

∂x∂y
(ξ2, η2)(b− a)(c− d) = f(b, d)− f(b, c)− f(a, d) + f(a, c) .

Comparing with (∗) we see that

∂2f

∂x∂y
(ξ2, η2) =

∂2f

∂y∂x
(ξ1, η1) , (∗∗)

where (ξk, ηk) ∈ [a, b] × [c, d]. Given (x, y) ∈ U we can find r > 0 such that
[x− r, x+ r]× [y− r, y+ r] ⊆ U . For any ϵ ∈]0, r] we have just seen that there exists
(ξk, ηk) ∈ [x − ϵ, x + ϵ] × [y − ϵ, y + ϵ] for k = 1, 2 such that (∗∗) holds. If ϵ → 0

then (ξk, ηk) → (x, y) for k = 1, 2 and as f is C2 the functions ∂2f
∂x∂y

and ∂2f
∂y∂x

are
continuous. So in the limit we have

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) .

Theorem 3.33. If U ⊆ Rn is a open set and f : U → Rm is a C2 vector function,
then ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
for all i, j = 1, . . . , n.

Proof. If i = j then there is nothing to show so we assume that i < j. If f =
(f1, . . . , fn) and given a point x = (x1, . . . , xn) ∈ U we consider the functions

gk(x, y) = fk(x1, . . . , xi−1, x, . . . , xi+1, . . . , xj−1, y, . . . , xj+1, . . . , xn) ,

for k = 1, . . . , n. By Lemma 3.32 we now have

∂2fk
∂xi∂xj

=
∂2gk
∂x∂y

=
∂2gk
∂y∂x

=
∂2fk

∂xj∂xi

, for k = 1, . . . , n .

By induction on the order of differentiation the following follows
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Theorem 3.34. If U ⊆ Rn is a open set, k ≥ 2, and f : U → Rm is a Ck

vector function, then ∂kf
∂xik

...∂xi1
= ∂kf

∂xiσ(k)
...∂xiσ(1)

for all i1, . . . , ik ∈ {1, . . . , n}, all

permutations σ : {1, . . . , k} → {1, . . . , k}.
Proof. We use induction on the order k. The case k = 2 is Theorem 3.33. So now we
assume the theorem holds for a k ≥ 2 and consider a permutation σ : {1, . . . , k+1} →
{1, . . . , k + 1}. If σ(1) ̸= k + 1 then k + 1 = σ(ℓ) for an ℓ ∈ {2, . . . , k + 1}. Let
τ : {2, . . . , k + 1} → {2, . . . , k + 1} be the permutation that exchange ℓ and k, i.e.,
τ(ℓ) = k + 1, τ(k + 1) = ℓ, and τ(j) = j otherwise. Then using the induction
hypothesis on the vector function ∂f

∂xσ(1)
we have

∂k

∂xiσ(k+1)
. . . ∂xiσ(2)

∂f

∂xσ(1)

=
∂k

∂xiσ(τ(k+1))
. . . ∂xiσ(τ(2))

∂f

∂xσ(1)

,

and we let σ̂{1, . . . , k+1} → {1, . . . , k+1} be the permutation defined by σ̂(1) = σ(1)
and σ̂(j) = σ(τ(j)) if j ̸= 1. We have in particular that σ̂(k + 1) = σ(τ(k + 1)) =
σ(ℓ) = k + 1.

If σ(1) = k + 1 then using Theorem 3.33 on the function f we have

∂k

∂xiσ(k+1)
. . . ∂xiσ(3)

∂2f

∂xσ(2)∂xσ(1)

=
∂k

∂xiσ(k+1)
. . . ∂xiσ(3)

∂2f

∂xσ(1)∂xσ(2)

.

If we now define a permutation τ : {1, 3, . . . , k+1} → {1, 3, . . . , k+1} by τ(1) = k+1,
τ(k + 1) = 1, and τ(j) = j otherwise. Then using the induction hypothesis on the
vector function ∂f

∂xσ(2)
we have

∂k

∂xiσ(k+1)
. . . ∂xiσ(3)

∂xσ(1)

∂f

∂xσ(2)

=
∂k

∂xσ(1)∂xiσ(k)
. . . ∂xiσ(3)

∂xiσ(k+1)

∂f

∂xσ(2)

.

We now let σ̂{1, . . . , k + 1} → {1, . . . , k + 1} be the permutation defined by σ̂(1) =
σ(2), σ̂(2) = k + 1, σ̂(k + 1) = σ(2) = k + 1, and σ̂(j) = σ(j) for j = 3, . . . , k.

In both cases we have
∂k+1f

∂xiσ(k+1)
. . . ∂xiσ(1)

=
∂k+1f

∂xiσ̂(k+1)
. . . ∂xiσ̂(1)

=
∂k+1

∂xik+1

∂kf

∂xiσ̂(k)
. . . ∂xiσ̂(1)

using the induction hypothesis

=
∂

∂xik+1

∂kf

∂xik . . . ∂xi1

=
∂k+1f

∂xik+1
. . . ∂xi1

.

If m = 1 then we have a function f : U → R and in the case of k = 2 we can
form an n× n matrix consisting of the second partial derivatives

H(x) =


∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

. . . ∂2f(x)
∂x2∂xn

...
... . . . ...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n

 ,
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called the Hessian, Hessian matrix , or Hesse matrix . By Theorem 3.33 the Hessian
is symmetric: HT = H . For such a C2 function we have

f(x+ h) = f(x) + dfx(h) +
1

2
hTH(x)h+ ϵ(h)|h|2

= f(x) +
n∑

i=1

∂f(x)

∂xi

hi +
1

2

n∑
i,j=1

∂2f(x)

∂xi∂xj

hihj + ϵ(h)|h|2 , (3.17)

where ϵ(h) → 0 for h → 0. The general form of Taylor’s theorem with reminder is

Theorem 3.35 (Taylor’s theorem with reminder). If U ⊆ Rn is an open set, f :
U → R is a Ck function, x,x + h ∈ U , and h = (h1, . . . , hn) then there exist
ξ ∈]0, 1[ such that

f(x+ h) = f(x) +
n∑

i=1

∂f(x)

∂xi

hi +
1

2

n∑
i1,i2=1

∂2f(x)

∂xi1∂xi2

hi1hi2 + . . .

+
1

(k − 1)!

n∑
i1,i2,...,ik−1=1

∂k−1f(x)

∂xi1∂xi2 . . . ∂xik−1

hi1hi2 . . . hik−1

+
1

k!

n∑
i1,i2,...,ik=1

∂kf(x+ ξh)

∂xi1∂xi2 . . . ∂xik

hi1hi2 . . . hik . (3.18)

Proof. Consider the function g : [0, 1] → R given by g(t) = f(x+ th). By repeated
use of Example 3.11 we have

dℓg

dtℓ
(t) =

n∑
i1,i2,...,iℓ=1

∂ℓf(x+ th)

∂xi1∂xi2 . . . ∂xiℓ

hi1hi2 . . . hiℓ . (3.19)

So Theorem 2.38 yields

f(x+ th) = g(t) =
k−1∑
ℓ=0

g(ℓ)(0)

ℓ!
tℓ +

g(ℓ)(ξ)

ℓ!
tℓ , (3.20)

for some ξ ∈]0, t[. Substituting (3.19) into (3.20), and letting t = 1 yields (3.18).

The ϵ-form of Taylor’s theorem now follows:

Theorem 3.36 (Taylor’s theorem). If U ⊆ Rn is an open set, f : U → R is a Ck

function, x+ th ∈ U for all t ∈ [0, 1], and h = (h1, . . . , hn) then

f(x+ h) = f(x) +
n∑

i=1

∂f(x)

∂xi

hi +
1

2

n∑
i1,i2=1

∂2f(x)

∂xi1∂xi2

hi1hi2 + . . .

+
1

k!

n∑
i1,i2,...,ik=1

∂kf(x)

∂xi1∂xi2 . . . ∂xik

hi1hi2 . . . hik + ϵ(h)|h|k , (3.21)

where ϵ(h) → 0 for h → 0.
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Proof. Theorem 3.35 yields

f(x+ h) = f(x) +
k∑

ℓ=1

1

ℓ!

n∑
i1,...,iℓ=1

∂ℓf(x)

∂xi1 . . . ∂xiℓ

hi1hi2 . . . hik

+
1

k!

n∑
i1,i2,...,ik=1

(
∂kf(x+ ξh)

∂xi1∂xi2 . . . ∂xik

− ∂kf(x)

∂xi1∂xi2 . . . ∂xik

)
hi1hi2 . . . hik .

We now put

ϵ(h) =
1

k!

n∑
i1,i2,...,ik=1

(
∂kf(x+ ξh)

∂xi1∂xi2 . . . ∂xik

− ∂kf(x)

∂xi1∂xi2 . . . ∂xik

)
hi1hi2 . . . hik

∥h∥k
,

and we need to show that ϵ(h) → 0 for h → 0. We have |hi|
∥h∥ ≤ 1 so

|ϵ(h)| ≤ 1

k!

n∑
i1,i2,...,ik=1

∣∣∣∣ ∂kf(x+ ξh)

∂xi1∂xi2 . . . ∂xik

− ∂kf(x)

∂xi1∂xi2 . . . ∂xik

∣∣∣∣ .
The continuity of all partial derivatives of order n implies that all terms in the sum
goes to zero for h → 0 and hence the same is true for ϵ(h).

Remark 3.37. If we have a Ck vector function f : U → Rm then we can use the
theorem on each coordinate function fℓ of f = (f1, . . . , fm).

Just as in the 1-dimensional case we can use the Taylor’s theorem to determine
(some of) the local maxima and minima.

Theorem 3.38. Let U ⊆ Rn be an open set, let x0 ∈ U , and let f : I → R be a
C2-function. If f(x0) is a local maximum or minimum then ∇f(x0) = 0.

Conversely, if ∇f(x0) = 0 and all eigenvalues of the Hessian H(x0) are positive
then f(x0) is a local minimum. If ∇f(x0) = 0 and all eigenvalues of the Hessian
H(x0) are negative then f(x0) is a local maximum.

Proof. Put g(t) = f(x0 + t∇f(h)) then g is differentiable, g(0) = f(x0), and
g′(0) = ∂∇f(x0)f = ⟨∇f(x0),∇f(x0)⟩ = ∥∇f(x0)∥2 . If f(x0) is1 a local maximum
or minimum in x0 then so is g(0). By Lemma 2.25 g′(0) = 0, i.e., ∇f(x0) = 0.

Now suppose ∇f(x0) = 0 and let λ1, . . . , λn be the eigenvalues of the Hessian
H . If e1, . . . , en is a corresponding orthonormal basis of eigenvectors of H and
h = h1e1 + · · ·+ hnen then we have

f(x0 + h) = f(x0) +
1

2
hTHh+ ϵ(h)∥h∥2

= f(x0) +
1

2
(λ1h

2
1 + · · ·+ λnh

2
n) + ϵ(h)∥h∥2

= f(x0) +
1

2
(λ1h

2
1 + · · ·+ λnh

2
n) + ϵ(h)(h2

1 + · · ·+ h2
n)

= f(x0) +
1

2
((λ1 + 2ϵ(h))h2

1 + · · ·+ (λn + 2ϵ(h))h2
n) .
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We have ϵ(h) → 0 for h → 0 so if λ1, . . . , λn ̸= 0 then we can find r > 0 such that
|2ϵ(h)| < min{|λ1|, . . . , |λn|} for ∥h∥ < r. In that case λn+2ϵ(h) has the same sign
as λk. So if all λk are negative f(x0 + h) < f(x0) for ∥h∥ < r and we have a local
maximum and if they all are positive f(x0 +h) > f(x0) for ∥h∥ < r and we have a
local minimum.

Remark 3.39. If ∇f(x0) = 0 and we have at least one positive and one negative
eigenvalue of the Hessian then f increases in some direction and decreases in some
other directions. We then say that f(x0) is a saddle point , and we know for certain
that we neither have a local maximum nor a local minimum.

3.4 Curves and line integrals

If we have a differential vector function x : [a, b] → Rn then the image is a curve in
Rn and we call x a parametrisation of the curve. If n = 2 we have a planar curve
and if n = 3 we have a space curve.

Example 3.12. Consider the quarter circle x2 + y2 = 1 and x, y ≥ 0 in the plane.
The vector function x : [0, π

2
] → R2 given x(t) = (cos t, sin t) is a parametrisation

of the quarter circle, but so is y : [0, 1] → R2 given by y(t) =
(

1−t2

1+t2
, 2t
1+t2

)
. Indeed,(

1−t2

1+t2

)2
+
(

2t
1+t2

)2
= 1−2t2+t4+4t2

1+2t2+t4
= 1+2t2+t4

1+2t2+t4
= 1. So a curve can be parameterised in

many ways.

The variable t ∈ [a, b] may represent time and the curve the trajectory of a
particle moving through space. With such an interpretation the derivative x′(t) is
the velocity at time t and the length ∥x′(t)∥ is the speed . This is often expressed as
ds
dt

=
∥∥dx

dt

∥∥, where s represent arc-length on the curve. In order to find the length of
the curve, i.e., how long have the particle moved we need to integrate the speed:

L =

∫ b

a

ds

dt
dt =

∫ b

a

∥x′(t)∥ dt . (3.22)

An other way to determine the length of the curve is to approximate by polygons.
We can evaluate the curve in points a = t0 < t1, < · · · < tn = b and consider
the polygon with vertices x(t0),x(t1), . . . ,x(tn), see Figure 3.4. The length of the

Figure 3.4: To the left a curve and a polygonal approximation. To the right a curve
with a kink and a cusp.
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polygon is obviously
∑N

k=1 ∥x(tk)−x(tk−1∥. If hk = tk− tk−1 then Taylor’s theorem
tells us that ∥x(tk) − x(tk−1)∥ = ∥x′(tk−1)∥hk + ϵ(hk)|hk| and using this it can be
shown that if maxk=1,...,n |hk| → 0 then the polygon length converges to the length
defined by (3.22).

If x′(x) ̸= 0 for all x ∈ [a, b] then the curve has a well defined tangent at each
point in the direction of x′(x). We then call the curve regular . At points where
x′(x) = 0 the curve may have a kink or a cusp, see Figure 3.4.

Now suppose that we have a domain U ⊆ Rn with x([a, b]) ⊆ U and a function
f : U → R. We want to integrate f over the curve. If we want to mimic the
definition of the Riemann integral then we could cut the curve into pieces, choose
a point in each piece, evaluate the function f in that point, multiply the value of
the function with the length of the piece, and add the result of all the pieces. If
we compare the length of piece between x(t) and x(t + h) with h then we have
∥x(t+h)−x(t)∥

|h| = ∥x′(t)∥+ ϵ(h). So if the curve is sampled more and more densely the
procedure outline above leads to the expression∫ L

0

f(x) ds =

∫ b

a

f(x(t))
ds

dt
dt =

∫ b

a

f(x(t))∥x′(t)∥ dt , (3.23)

called the line integral of f along the curve. We will not prove that, but we will
prove that all parametrisations yields the same result.

Suppose we have a differentiable function g : [c, d] → [a, b]. Then Theorem 2.63
tells us that ∫ b

a

f(x(t))∥x′(t)∥ dt =
∫ d

c

f(x(g(u)))∥x′(g(u))∥g′(u) du .

On the other hand if g is monotonically increasing then y = x◦g is also a parametri-
sation and y′(u) = x′(g(u))g′(u). Hence∫ d

c

f(y(u))∥y′(u)∥ du =

∫ d

c

f(x(g(u)))∥x′(g(u))∥g′(u) du ,

and we see that the expression (3.23) does not depend on the parametrisation.
If v : U → Rn is a vector function on domain U ⊆ Rn and x([a, b]) ⊆ U then we

can take the inner product with the tangent vector t = dx
ds

= x′

∥x′∥ and integrate the
result:∫ L

0

⟨t,v⟩ ds =
∫ L

0

〈
dx

ds
,v(x)

〉
ds =

∫ b

a

〈
dt

ds

dx

dt
,v(x)

〉
ds

dt
dt

=

∫ b

a

〈(
1
ds
dt

)
dx

dt
,v(x)

〉
ds

dt
dt =

∫ b

a

⟨x′(t),v(x(t))⟩ dt . (3.24)

This is called the line integral of v along the curve. A calculation as above shows
that the result does not depend on the parametrisation (Exercise 3.2).
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3.5 Integration in higher dimensions

Integration in Rn for n ≥ 2 is considerable more involved that in integration in R
as we did in Section 2.3. The length of the interval [a, b] is b − a, but if we have a
domain in the plane what is the area?

If A ⊆ Rn and f : A → R is continuous then we would like to integrate f over
A, i.e., calculate

∫
A
f(x1, . . . , xn) dxn . . . dx1. We have on example where it is clear

how this should be done. If A = [a1, b1]× [a2, b2]×· · ·× [an, bn] ⊆ Rn then we simply
let ∫

A

f(x) dxn . . . dx1 =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, . . . , xn) dxn . . . dx1 . (3.25)

We only need to show the following result.

Lemma 3.40. If A = [a1, b1]× [a2, b2]×· · ·× [an, bn] ⊆ Rn and f : A → R is contin-
uous then the function g : [a1, b1]×· · ·× [an−1, bn−1] → R given by g(x1, . . . , xn−1) =∫ bn
an

f(x1, . . . , xn−1, t) dt is continuous.

Proof. We have

|g(x1, . . . , xn−1)− g(y1, . . . , yn−1)|

≤
∫ bn

an

|f(x1, . . . , xn−1, t)− f(y1, . . . , yn−1, t)| dt ,

and as f is uniformly continuous it is not hard to show that so is g. The details is
left as Exercise 3.3

3.5.1 Integration in the plane

Let Ω ⊆ R2 be a domain in the plane and let f : Ω → R be a continuous function.
We want to define the integral of f over Ω and we will write it as

∫
Ω
f(x) dA.

Suppose we have a differentiable map x : [a1, b1]× [a2, b2] → R2 such that the image
of x is Ω, i.e., x([a1, b1]× [a2, b2]) = Ω, i.e., a parametrisation of Ω.

Inspired by the definition of a line integral we will first see what happens to the
area of a small square under a differentiable map. The differential dx maps the unit
vectors (1, 0) and (0, 1) to the partial derivatives ∂x

∂u1
and ∂x

∂u2
and a small square

with edges he1 and he2 has area h2 and is approximately mapped to a parallelogram
with edges h ∂x

∂u1
and h ∂x

∂u2
. The area of that parallelogram is h2| detJ | where J is

the Jacobian matrix. We will now define the integral of f over Ω by∫
Ω

f(x) dA =

∫ b1

a1

∫ b2

a2

f(x(u, v))| detJ(x(u1, u2))| du2 du1 . (3.26)

Just as for line integrals it can be shown that the result is independent of the
parametrisation.

date/time: January 15, 2024/20:45 64 of 112



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.5. INTEGRATION

Example 3.13. Consider the parametrisation x : [0, r] × [0, 2π] → Dr, of the disc
with radius r, given by x(ρ, θ) = (ρ cos θ, ρ sin θ) (polar coordinates). The Jacobian
of x is J = ( ∂x

∂ρ
∂x
∂θ ) =

(
cos θ −ρ sin θ
sin θ ρ cos θ

)
and the determinant is detJ = ρ. The area of

the disc can be found by integrating the constant 1 over the disc, i.e.,∫
Dr

1 dA =

∫ r

0

∫ 2π

0

detJ dθ dρ =

∫ r

0

∫ 2π

0

ρ dθ dρ =

∫ r

0

2πρ dρ = πr2 .

3.5.2 Integration in space and higher dimensions

Domains in higher dimensions can be treated the same way. Let Ω ⊆ Rn and
let f : Ω → R be a continuous function. We want to define the integral of f
over Ω and we will write it as

∫
Ω
f(x) dV . Suppose we have a differentiable map

x : [a1, b1] × [a2, b2] × · · · × [an, bn] → Rn such that the image of x is Ω, i.e.,
x([a1, b1]× [a2, b2]× · · · × [an, bn]) = Ω, i.e., a parametrisation of Ω. We then define
the integral of f over Ω by∫

Ω

f(x) dV =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x(u, v))| detJ(x(u1, u2))| dun . . . du2 du1 . (3.27)

Again it can be shown that the result is independent of the parametrisation.

Example 3.14. Consider the following parametrisation of the solid ball with radius r:
x : [0, r]×[0, π]×[0, 2π] → Br given by x(ρ, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ).
The Jacobian is

J =

sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0

 ,

with determinant

detJ = ρ2 cos θ(cos θ sin θ cos2 ϕ+ cos θ sin θ sin2 ϕ)

+ ρ2 sin θ(sin2 θ cos2 ϕ+ sin2 θ sin2 ϕ)

= ρ2(cos2 θ sin θ + sin3 θ) = ρ2 sin θ .

So the volume of the ball is∫
Br

1 dV =

∫ r

0

∫ π

0

∫ 2π

0

detJ dϕ dθ dρ

=

∫ r

0

∫ π

0

∫ 2π

0

ρ2 sin θ dϕ dθ dρ =

∫ r

0

∫ π

0

2πρ2 sin θ dθ dρ

=

∫ r

0

2π[− cos θ]π0ρ
2 dρ =

∫ r

0

4πρ2 dρ =
4

3
πr3 .
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3.5.3 Surface integrals

If U ⊆ R2 and we have a differentiable vector function x : U → Rn with n ≥ 3 then
the image is called a surface in Rn and we call x a parametrisation of the surface.

If the the partial derivatives ∂x
∂u

and ∂x
∂v

spans a plane, i.e., they are linearly
independent, then we call the surface regular and it has a tangent plane at each
point, spanned by the partial derivatives, see Figure 3.5.

x−→

Figure 3.5: A parametrisation of a surface.

We would like to be able to integrate functions over the surface. A small square
in the parameter plane with edges he1 and he2 are approximately mapped to a
parallelogram with edges h∂x

∂u
and h∂x

∂v
. We first determine the area of that paral-

lelogram. If we let h∂x
∂u

be the base then it has length
∥∥h∂x

∂u

∥∥ and the height of the
parallelogram is∥∥∥∥∥h∂x∂v −

⟨h∂x
∂v
, h∂x

∂u
⟩∥∥h∂x

∂u

∥∥2 h
∂x

∂u

∥∥∥∥∥ = |h|

√√√√∥∥∥∥∂x∂v
∥∥∥∥2 − ⟨∂x

∂v
, ∂x
∂u
⟩2∥∥∂x

∂u

∥∥2 .

So the area is

h2

√∥∥∥∥∂x∂u
∥∥∥∥2 ∥∥∥∥∂x∂v

∥∥∥∥2 −〈∂x

∂v
,
∂x

∂u

〉2

= h2

√
det

(〈
∂x
∂u
, ∂x
∂u

〉 〈
∂x
∂u
, ∂x
∂v

〉〈
∂x
∂v
, ∂x
∂u

〉 〈
∂x
∂v
, ∂x
∂v

〉)

= h2

√
det

((
∂x
∂u
∂x
∂v

)(
∂x
∂u

∂x
∂v

))
= h2

√
det(JTJ) ,

where J = ( ∂x
∂u

∂x
∂v ) is the Jacobian of x. If S is a surface and x : [a1, b1]×[a2, b2] → S

is a parametrisation of S then the integral of a function f defined on a set A ⊆ Rn

with x(U) ⊆ A is ∫
S

f dA =

∫ b1

a1

∫ b1

a1

f(x(u, v)) dv du . (3.28)

As before it can be shown that the result does not depend on the parametrisation
x. If f = 1 on S then we obtain the area of S.
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Example 3.15. Consider the parametrisation of the sphere with radius r given by
x(θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) for (θ, ϕ) ∈ [0, π]× [0, 2π]. The Jacobian
is

J =

r cos θ cosϕ −r sin θ sinϕ
r cos θ sinϕ r sin θ cosϕ
−r sin θ 0

 ,

and we have∥∥∥∥∂x∂u
∥∥∥∥2 = r2 cos2 θ cos2 ϕ+ r2 cos2 θ sin2 ϕ+ r2 sin2 θ = r2 ,〈

∂x

∂u
,
∂x

∂v

〉
= −r2 cos θ sin θ cosϕ sinϕ+ r2 cos θ sin θ cosϕ sinϕ = 0 ,∥∥∥∥∂x∂v

∥∥∥∥2 = r2 sin2 θ sin2 ϕ+ r2 sin2 θ cos2 ϕ = r2 sin2 θ .

So JTJ =
(
r2 0
0 r2 sin2 θ

)
, the determinant is det(JTJ) = r4 sin2 θ, and the area of the

sphere is∫
S

1 dA =

∫ π

0

∫ 2π

0

√
det(JTJ) dϕ dθ =

∫ π

0

∫ 2π

0

r2 sin θ dϕ dθ

=

∫ π

0

2πr2 sin θ dθ = 2πr2[− cos θ]π0 = 4πr2 .

3.6 Vector fields

Let U ⊆ Rn be an open set and let f : U → Rn. Then we can think of f as a vector
field on U , i.e., attach the vector f(x) to the point x, see Figure 3.6 left. It could

Figure 3.6: Left: A vector field on R2. Right: Level sets of a function and its
gradient field.

be the velocity field of a fluid, the inner forces or strains in a beam, the electric field
around an antenna, etc.
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Definition 3.41 (Gradient). Let U ⊆ Rn be an open set and let f : U → R be
differentiable. If ⟨·, ·⟩ is an inner product then the gradient of f at ∈ U is a vector
∇f(x) ∈ Rn such that ⟨∇f(x),h⟩ = dfxh for all h ∈ Rn. If we consider x ∈ Rn as
a column matrix, the inner product ⟨·, ·⟩ is the usual inner product ⟨x,y⟩ = xTy,
and J(x) ∈ R1×n is the Jacobian matrix then we have ∇f(x) = J(x)T .

Remark 3.42. The gradient ∇f(x) of a function f : U → R is often confused with
the differential dfx. But dfx is a linear map Rn → R, i.e., a linear form and is
defined with out any reference to an inner product. We can also define dfx if we
replace Rn with a abstract vector space. The gradient is a vector ∇f(x) ∈ Rn and
can only be defined if we have an inner product. Different inner products leads to
different gradients. If we consider vectors in Rn as columns and use matrix notation
then dfx is represented by the Jacobi matrix J(x) ∈ R1×n and ∇f(x) ∈ Rn×1. It is
only if we use the usual inner product in Rn that ∇f(x) = J(x)T .
Remark 3.43. If f is a differentiable function with gradient ∇f and v ∈ Rn is a
vector that is tangent to a level set. Then

⟨∇f(x),v⟩ = dfx(v) = ∂vf(x) = 0 .

That is, the gradient is orthogonal to the level sets, see Figure 3.6 right.
In dimension one a vector field on an interval I is just a function f : I → R

and by integrating it we see that it is gradient field: f(x) = d
dx

∫ x

x0
f(t) dt. In higher

dimensions gradient fields are special.
Let U ⊆ Rn be open and let v(x) = (v1(x), . . . , vn(x)) be a C1 vector field (or

function) Rn → Rn. If v is a gradient field, v = ∇f , then vk = ∂f
∂xk

and v has the
Jacobian matrix

J =

∇v1
...

∇vn

 =


∂v1
∂x1

. . . ∂v1
∂xn... . . . ...

∂vn
∂x1

. . . ∂vn
∂xn

 =


∂2f
∂x2

1
. . . ∂2f

∂xn∂x1

... . . . ...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n

 ,

i.e., J = H the Hessian of f . In that case we can see that J is symmetric. The
converse is true under some condition on the domain U .

Theorem 3.44. Let B(x0, r) ⊆ Rn be an open ball. A C1 vector field v : B(x0, r) →
Rn is a gradient field if and only if the Jacobian matrix J is symmetric at all points
x ∈ U . In that case we have v = df , where

f(x) =

∫ 1

0

⟨v(x0 + t(x− x0)),x− x0⟩ dt . (3.29)

Proof. If v = df then the Jacobian is J = H is the Hessian of f which is symmetric.
Conversely, assume the Jacobian J =

(
∂vi
∂xj

)
is symmetric and ∥h∥ < r. Put

g(s,h) =

∫ s

0

⟨v(x0 + th),h⟩ dt .
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Observe that f(x) = g(1,x − x0). We have g(0,h) = 0 for all h, so ∂g
∂hi

(0,h) = 0
for all i = 1, . . . , n. Furthermore,

∂2g

∂t∂hi

(s,h) =
∂2g

∂hi∂t
(s,h) =

∂

∂hi

⟨v(x0 + th),h⟩

=
∂

∂hi

n∑
j=1

vj(x0 + th)hj

=
n∑

j=1

t
∂vj
∂hi

(x0 + th)hj + vi(x0 + th)

using the symmetri of J

= t

n∑
j=1

∂vi
∂hj

(x0 + th)hj + vi(x0 + th)

= t⟨∇vi(x0 + th),h⟩+ vi(x0 + th)

=
∂

∂t
(tvi(x0 + th)) .

As ∂g
∂hi

(t,h) and tvi(x0+th) both are zero for t = 0 and they have the same derivative
with respect to t we must have ∂g

∂hi
(t,h) = vi(x0 + th). Letting t = 1 we see that

∇f(x) = ∇g(1,x− x0) = v(x).

Remark 3.45. The theorem says that a vector field with a symmetric Jacobian matrix
locally is a gradient field. We may or may not be able to piece local solutions together
and obtain a global solution, see Figure 3.7.

Figure 3.7: If we have a vector field v with symmetric Jacobian matrix and functions
fi with ∇fi = v on each open ball, then they differ by a constant on the overlaps.
To the left we can add constants to the functions and obtain a function on the union
of the balls. But if we add the red ball to the right we may have different constants
on the two overlaps with the red ball and in that case we cannot find a solution on
the union of the balls.
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Example 3.16. Let v = (x,y)

10
√

x2+y2
defined on the annulus 1

4
< x2 + y2 < 1, see

Figure 3.8 left. It is the gradient of the function given by f(x, y) =

√
x2+y2

10
, shown

below.
Example 3.17. Let v = (−y,x)

10
√

x2+y2
defined on the annulus 1

4
< x2 + y2 < 1, see

Figure 3.8 right. It is the gradient of the function given by f(x, y) =
arctan y

x

10
, shown

below. But we can not define it on all of the annulus.

Figure 3.8: Top two vector fields. Below functions having these gradients.

Remark 3.46. To characterise the domains U ∈ Rn where symmetry of the Jacobian
matrix of a vector field v on U implies the existence of a function f : U → R with
∇f = v we need concepts from algebraic topology: The domain should be simply
connected, but to explain the precise meaning of that is beyond the scope of this
book.

Definition 3.47 (Divergence). Let U ⊆ Rn be an open set and let v = (v1, v2, . . . , vn)
be a differentiable vector field on U , i.e., v : U → Rn is differentiable. The divergence
of v is

div v =
∂v1
∂x1

+
∂v2
∂x2

+ · · ·+ ∂vn
∂xn

. (3.30)

The notation div v = ∇ · v is often seen and if we consider ∇ as a vector with
components ∂

∂x1
, . . . , ∂

∂xn
and formally calculates the inner product between ∇ and

v then we obtain the divergence, c.f. Exercise 3.1.

Remark 3.48. As the Jacobian matrix of v is

J =


∂v1
∂x1

. . . ∂v1
∂xn... . . . ...

∂vn
∂x1

. . . ∂vn
∂xn

 ,
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we have div v = traceJ .

If we think of the vector field as the velocity field of a fluid then the divergence
measures the infinitesimal expansion or contraction of the fluid . The velocity of an
incompressible fluid has zero divergence.

Example 3.18. If v = (x,y)

10
√

x2+y2
from Example 3.16 then

div v =
∂

∂x

x

10
√

x2 + y2
+

∂

∂y

y

10
√
x2 + y2

=
1

10

(
1√

x2 + y2
− x2

(x2 + y2)3/2
+

1√
x2 + y2

− y2

(x2 + y2)3/2

)

=
1

10

(
x2 + y2

(x2 + y2)3/2
− x2

(x2 + y2)3/2
+

x2 + y2

(x2 + y2)3/2
− y2

(x2 + y2)3/2

)
=

1

10

y2 + x2

(x2 + y2)3/2
=

1

10
√

x2 + y2
.

Example 3.19. If v = (−y,x)

10
√

x2+y2
from Example 3.17 then

div v =
∂

∂x

−y

10
√

x2 + y2
+

∂

∂y

x

10
√
x2 + y2

=
1

10

(
−yx

(x2 + y2)3/2
+

xy

(x2 + y2)3/2

)
= 0 .

Definition 3.49. Let U ⊆ Rn be an open set and let f : U → Rn be a C2 function.
The Laplacian of f is

△f = div∇f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

. (3.31)

The operator △ = div∇ is called the Laplace operator .

3.6.1 The divergence theorem

Given a vector field on a domain. The divergence theorem says that the integral of
the divergence over the domain is the same as the integral of the normal component
of the vector field over the boundary of the domain.

Dimension 1

Consider a differentiable vector field on an open interval I ⊆ R, i.e., a differentiable
function f : I → R. and an interval [a, b] ⊆ I, see Figure 3.9. We can think of f as
the velocity of electric charges in a wire, as the velocity of a gas in a thin tube, or
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Figure 3.9: Flux out of an interval.

as the velocity of cars on straight road. We are interested in flux of the vector field
f , i.e., how much charge or air that flows in or out of the interval [a, b]. The rate of
flow out of the interval at a is −f(a) and the rate of flow out of the interval at b is
f(b). So the total rate of flow (or flux) out of the interval is

f(b)− f(a) =

∫ b

a

f ′(x) dx . (3.32)

Dimension 2

We now consider a C1 vector field v(x, y) = v1(x, y)e1 + v2(x, y)e2 on an open set
U ⊆ R2 and at first a rectangle [a, b]× [c, d] ⊆ U , see Figure 3.10. The rates of flow

Figure 3.10: Flux out of a rectangle.

out of the rectangle at the sides x = a or x = b and c ≤ y ≤ d are

−
∫ d

c

v1(a, y) dy =

∫ d

c

⟨v(a, y),−e1⟩ =
∫ d

c

⟨v(a, y),n(a, y)⟩ ,

and ∫ d

c

v1(b, y) =

∫ d

c

⟨v(b, y), e1⟩ dy =

∫ d

c

⟨v(b, y),n(b, y)⟩ dy ,

respectively, where n is the outward normal. So the total flux out of the two vertical
sides is∫ d

c

⟨v(b, y),n(b, y)⟩ dy +
∫ d

c

⟨v(a, y),n(a, y)⟩ dy

=

∫ d

c

v1(b, y) dy −
∫ d

c

v1(a, y) dy =

∫ d

c

(v1(b, y)− v1(a, y)) dy

=

∫ d

c

∫ b

a

∂v1
∂x

dx dy .
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Similar, the total flux out of the two horizontal sides is∫ b

a

⟨v(x, d),n(x, d)⟩ dx+

∫ b

a

⟨v(x, c),n(x, c)⟩ dx =

∫ b

a

v2(x, d) dx−
∫ b

a

v2(x, c) dx

=

∫ b

a

(v2(x, d)− v2(x, c)) dx =

∫ b

a

∫ d

c

∂v2
∂y

dy dx .

We see that the total flux out of the rectangle is∫ d

c

⟨v(a, y),n(a, y)⟩ dy +
∫ b

a

⟨v(x, d),n(x, d)⟩ dx

+

∫ d

c

⟨v(b, y),n(b, y)⟩ dy +
∫ b

a

⟨v(x, c),n(x, c)⟩ dx

=

∫ d

c

∫ b

a

∂v1
∂x

dx dy +

∫ d

c

∫ b

a

∂v2
∂y

dx dy

=

∫ d

c

∫ b

a

(
∂v1
∂x

+
∂v2
∂y

)
dx dy =

∫ d

c

∫ b

a

div v dx dy . (3.33)

Now consider the polygon P = (p1,p2, . . . ,p8) with axis parallel edges to the
left in Figure 3.11. The total flux out of the domain inside the polygon is

Figure 3.11: Left: The flux out of an axis parallel polygon. Right: The flux out of
a domain Ω with boundary Γ.

∫ b1

a1

⟨n1(x, c1),v(x, c1)⟩ dx+

∫ c2

c1

⟨n1(b1, y),v(b1, y)⟩ dy

+

∫ b2

a2

⟨n2(x, c2),v(x, c2)⟩ dx+

∫ d2

c2

⟨n2(b2, y),v(b2, y)⟩ dy

+

∫ b2

a2

⟨n2(x, d2),v(x, d2)⟩ dy +
∫ d2

d1

⟨n2(a2, y),v(a2, y)⟩ dy

+

∫ b1

a1

⟨n1(x, d1),v(x, d1)⟩ dy +
∫ d1

c1

⟨n1(a1, y),v(a1, y)⟩ dy (3.34)
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If we look at the (dashed) line between the points p3 and p7 then we see that the
two normals are in opposite direction and hence n1 + n2 = 0 on that line. As we
furthermore have that b1 = a2 we obtain

∫ d1

c2

⟨n1(b1, y),v(b1, y)⟩ dy +
∫ d1

c2

⟨n2(a2, y),v(a2, y)⟩ dy

=

∫ d1

c2

⟨n1(a2, y) + n2(a2, y),v(a2, y)⟩ dy =

∫ d1

c2

⟨0,v(a2, y)⟩ dy = 0 .

Adding this to (3.34), rearranging, and using (3.33) we can write the total flux as

∫ b1

a1

⟨n1(x, c1),v(x, c1)⟩ dx+

∫ d1

c1

⟨n1(b1, y),v(b1, y)⟩ dy

+

∫ b1

a1

⟨n1(x, d1),v(x, d1)⟩ dy +
∫ d1

c1

⟨n1(a1, y),v(a1, y)⟩ dy

+

∫ b2

a2

⟨n2(x, c2),v(x, c2)⟩ dx+

∫ d2

c2

⟨n2(b2, y),v(b2, y)⟩ dy

+

∫ b2

a2

⟨n2(x, d2),v(x, d2)⟩ dy +
∫ d2

c1

⟨n2(a2, y),v(a2, y)⟩ dy

=

∫ d1

c1

∫ b1

a1

div v dx dy +

∫ d2

c2

∫ b2

a2

div v dx dy . (3.35)

If we have a general domain Ω ⊆ R2 with a piecewise C1 boundary Γ as to the right
in Figure 3.11, the total flux out of the domain is

∫
Γ
⟨v,n⟩ ds where we integrate

with respect to arc-length on the boundary curve Γ. By approximating the domain
by the union of rectangles that only intersects at the edges, as in the example to the
left in Figure 3.11, we see that we have

∫
Γ

⟨v,n⟩ ds =
∫
Ω

div v dx dy . (3.36)

Arbitrary dimension

If we have a C1 vector field v on an open set U ⊆ Rn and an n-dimensional box
[a1, b1]× [a2, b2]× · · · × [an, bn] ⊆ U then a calculation as in (3.33) shows that total
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flux out of the 2n sides is∫ b2

a2

· · ·
∫ bn

an

⟨v(a1, x2, . . . , xn),n(a1, x2, . . . , xn) dx2 . . . dxn

+

∫ b2

a2

· · ·
∫ bn

an

⟨v(b1, x2, . . . , xn),n(b1, x2, . . . , xn) dx2 . . . dxn

...

+

∫ b1

a1

· · ·
∫ bn−1

an−1

⟨v(x1, . . . , xn−1, bn),n(x1, . . . , xn−1, bn) dx1 . . . dxn−1

+

∫ b1

a1

· · ·
∫ bn−1

an−1

⟨v(x1, . . . , xn−1, bn),n(x1, . . . , xn−1, bn) dx1 . . . dxn−1

=

∫ b1

a1

· · ·
∫ bn

an

div v(x1, . . . , xn) dx1 . . . dxn . (3.37)

By stacking such boxes we can approximate any bounded domain Ω ⊂ Rn with a
piecewise C1 boundary and we see that the equations (3.32) and (3.36) are special
cases of the following theorem

Theorem 3.50 (Divergence (or Gauss) theorem). If v is a C1 vector field on an
open set U ⊆ Rn, Ω ⊆ U is a domain with a piecewise C1 boundary S = ∂Ω, and n
is the outward normal on ∂Ω then∫

∂Ω

⟨v,n⟩ dS =

∫
Ω

div v dU . (3.38)

3.6.2 Stokes theorem

Stokes theorem are concerned with vector fields in dimension three, i.e., with a
vector fields defined on some open set U ⊆ R3. We first need the definition of the
curl of a vector field.

Definition 3.51. Let v : U → R3 be a C1 vector field defined on some open set
U ⊆ R3. If v(x, y, z) = (v1(x, y, z), v2(x, y, z), v3(x, y, z)) then the curl of v is a new
vector field defined by

curlv =

(
∂v3
∂y

− ∂v2
∂z

,
∂v1
∂z

− ∂v3
∂x

,
∂v2
∂x

− ∂v1
∂y

)
. (3.39)

The notation curlv = ∇ × v is often seen and if ∇ is considered as a vector with
components

(
∂
∂x
, ∂
∂y
, ∂
∂y

)
and formally calculate the cross product ∇ × v then we

obtain curlv, c.f. Exercise 3.4.

Example 3.20. Let v(x, y, z) = (x, y, z). Then curlv = 0.

Example 3.21. Let v(x, y, z) = (−y, x, x2 + y2 + z2). Then curlv = (2y,−2x, 2).
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Example 3.22. Let ω = (0, 0, ω) and define a vector field by v(x) = ω × x. Then
v(x, y, z) = (−ωy, ωx, 0) and curlv = (0, 0, 2ω) = 2ω.

A rotation around the z-axis with angular velocity ω is given byx
y
z

 =

cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

x0

y0
z0

 .

The velocity field isx′

y′

z′

 =

−ω sin(ωt) −ω cos(ωt) 0
ω cos(ωt) −ω sin(ωt) 0

0 0 0

x0

y0
z0


=

−ω(x0 sin(ωt) + y0 cos(ωt))
ω(x0 cos(ωt)− y0 sin(ωt))

0

 =

−ωy
ωx
0

 =

0
0
ω

×

x
y
z

 .

Now let ω be an arbitrary non zero vector in space, let x0 be an arbitrary point
in space, and define a vector field by v(x) = ω× (x−x0). By choosing a coordinate
system such that x0 is the origin and the z-axis is in the direction of ω we see that
curlv = 2ω. We also have that the vector field v is the velocity field of a rotation
around the z-axis with angular velocity ω.

In other words, the curl of the velocity field of a rotation has the same direction
as the axis of rotation and the size is twice the angular velocity.

Remark 3.52. If we interpret a vector field v as the velocity field of fluid and consider
a small volume around a point x then v(x) describes the instantaneous translation
of the volume, div v(x) describes the instantaneous expansion or contraction, and
curlv(x) describes the instantaneous rotation of the volume (up to a factor of 2).

Given a surface in U ⊆ R3 and a vector field v on U . Stokes theorem says that
the integral of the normal component of curlv over the surface is the same as the
integral of the tangential component of v along the boundary of the surface.

First a couple of definitions.

Definition 3.53. Let ϵ > 0 and let x :]a−ϵ, b+ϵ[×]c−ϵ, d+ϵ[→ R3 be a C1 function
that parameterise a regular surface. Then x([a, b]× [c, d]) is a regular surface with a
piecewise C1 boundary. The boundary of the surface is the image of the boundary
of the rectangle.

In Figure 3.12 we have shown an example of a regular surface with boundary.
Observe that the orientation of the surface (what way does the normal point) and
the boundary (what way does the tangent point) are compatible according to the
right hand rule.

By a tedious, but straight forward, calculation we can show Stokes theorem for
this kind of surfaces.
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Figure 3.12: A regular surface S = S1 ∪ S2 with boundary.

Lemma 3.54. Let U ⊆ R3 be an open set, let v : U → R3 be a vector field on U ,
and let S ⊆ U be a regular surface with a piecewise C1 boundary and with normal
N . Then we have ∫

S

⟨curlv,N⟩ dA =

∫
∂S

⟨v, t⟩ ds , (3.40)

where t is the tangent of the boundary ∂S.

Proof. Let x : [a, b]× [b, c] → S be a parametrisation of S. Then we have

N =
∂x
∂u

× ∂x
∂v∥∥∂x

∂u
× ∂x

∂v

∥∥ , dA =

∥∥∥∥∂x∂u × ∂x

∂v

∥∥∥∥ du dv ,

and ∫
S

⟨curlv,N⟩ dA =

∫ b

a

∫ d

c

〈
curlv,

∂x

∂u
× ∂x

∂v

〉
du dv .

We have〈
curlv,

∂x

∂u
× ∂x

∂v

〉
=

〈∂v3
∂y

− ∂v2
∂z

∂v1
∂z

− ∂v3
∂x

∂v2
∂x

− ∂v1
∂y

 ,

 ∂y
∂u

∂z
∂v

− ∂z
∂u

∂y
∂v

∂z
∂u

∂x
∂v

− ∂x
∂u

∂z
∂v

∂x
∂u

∂y
∂v

− ∂y
∂u

∂x
∂v

〉

=
∂v1
∂z

(
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)
− ∂v1

∂y

(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)
+

∂v2
∂x

(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)
− ∂v2

∂z

(
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v

)
+

∂v3
∂y

(
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v

)
+

∂v3
∂x

(
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)
.

The boundary ∂S consist of four pieces x(t, c), t ∈ [a, b], x(b, t), t ∈ [c, d],
x(a + b − t, d), t ∈ [a, b], and x(a, c + d − t), t ∈ [c, d]. The velocity is found by
differentiating with respect to t and the tangent t by normalising the velocity. The
speed ds

dt
is the norm of the velocity. In the case of the first piece we have

t =
∂x(t,c)

∂t∥∥∥∂x(t,c)
∂t

∥∥∥ =
∂x
∂u
(t, c)∥∥∂x

∂u
(t, c)

∥∥ , ds

dt
=

∥∥∥∥∂x∂u (t, c)
∥∥∥∥ ,
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and similar for the other three curves. We obtain∫
∂S

⟨v, t⟩ ds =
∫ b

a

〈
v,

∂x(t, c)

∂t

〉
dt+

∫ d

c

〈
v,

∂x(b, t)

∂t

〉
dt

+

∫ b

a

〈
v,

∂x(a+ b− t, d)

∂t

〉
dt+

∫ d

c

〈
v,

∂x(a, c+ d− t)

∂t

〉
dt

=

∫ b

a

〈
v,

∂x

∂u
(u, c)

〉
du+

∫ d

c

〈
v,

∂x

∂v
(b, v)

〉
dv

−
∫ b

a

〈
v,

∂x

∂u
(u, d)

〉
du−

∫ d

c

〈
v,

∂x

∂v
(a, v)

〉
dv

=

∫ b

a

(〈
v,

∂x

∂u
(u, c)

〉
−
〈
v,

∂x

∂u
(u, d)

〉)
du

+

∫ d

c

(〈
v,

∂x

∂v
(b, v)

〉
−
〈
v,

∂x

∂v
(a, v)

〉)
dv

= −
∫ b

a

∫ d

c

∂

∂v

〈
v,

∂x

∂u
(u, v)

〉
dv du+

∫ d

c

∫ b

a

∂

∂u

〈
v,

∂x

∂v
(u, v)

〉
du dv

= −
∫ b

a

∫ d

c

(〈
∂v

∂v
,
∂x

∂u

〉
+

〈
v,

∂2x

∂v∂u

〉)
dv du

+

∫ b

a

∫ d

c

(〈
∂v

∂u
,
∂x

∂v

〉
+

〈
v,

∂2x

∂u∂v

〉)
dv du

=

∫ b

a

∫ d

c

(〈
∂v

∂u
,
∂x

∂v

〉
−
〈
∂v

∂v
,
∂x

∂u

〉)
dv du .

Now〈
∂v

∂u
,
∂x

∂v

〉
−
〈
∂v

∂v
,
∂x

∂u

〉
=

〈
∂v

∂x

∂x

∂u
+

∂v

∂y

∂y

∂u
+

∂v

∂z

∂z

∂u
,
∂x

∂v

〉
−
〈
∂v

∂x

∂x

∂v
+

∂v

∂y

∂y

∂v
+

∂v

∂z

∂z

∂v
,
∂x

∂u

〉
=

(
∂v1
∂x

∂x

∂u
+

∂v1
∂y

∂y

∂u
+

∂v1
∂z

∂z

∂u

)
∂x

∂v
−
(
∂v1
∂x

∂x

∂v
+

∂v1
∂y

∂y

∂v
+

∂v1
∂z

∂z

∂v

)
∂x

∂u

+

(
∂v2
∂x

∂x

∂u
+

∂v2
∂y

∂y

∂u
+

∂v2
∂z

∂z

∂u

)
∂y

∂v
−
(
∂v2
∂x

∂x

∂v
+

∂v2
∂y

∂y

∂v
+

∂v2
∂z

∂z

∂v

)
∂y

∂u

+

(
∂v3
∂x

∂x

∂u
+

∂v3
∂y

∂y

∂u
+

∂v3
∂z

∂z

∂u

)
∂z

∂v
−
(
∂v3
∂x

∂x

∂v
+

∂v3
∂y

∂y

∂v
+

∂v3
∂z

∂z

∂v

)
∂z

∂u

=

(
∂v1
∂y

∂y

∂u
+

∂v1
∂z

∂z

∂u

)
∂x

∂v
−
(
∂v1
∂y

∂y

∂v
+

∂v1
∂z

∂z

∂v

)
∂x

∂u

+

(
∂v2
∂x

∂x

∂u
+

∂v2
∂z

∂z

∂u

)
∂y

∂v
−
(
∂v2
∂x

∂x

∂v
+

∂v2
∂z

∂z

∂v

)
∂y

∂u

+

(
∂v3
∂x

∂x

∂u
+

∂v3
∂y

∂y

∂u

)
∂z

∂v
−
(
∂v3
∂x

∂x

∂v
+

∂v3
∂y

∂y

∂v

)
∂z

∂u
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=
∂v1
∂z

(
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)
− ∂v1

∂y

(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)
+

∂v2
∂x

(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)
− ∂v2

∂z

(
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v

)
+

∂v3
∂y

(
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v

)
+

∂v3
∂x

(
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)
=

〈
curlv,

∂x

∂u
× ∂x

∂v

〉
.

This finishes the proof.

Definition 3.55. Suppose we have regular surfaces S1, . . . , Sn with piecewise C1

boundaries ∂S1, . . . , ∂Sn. If they only intersect at the boundary, i.e., Sk ∩ Sℓ =
∂Sk ∩ ∂Sℓ if k ̸= ℓ, the union S =

⋃n
k=1 Sk is a piecewise regular surface with a

piecewise C1 boundary.

In Figure 3.13 we have shown an example of a piecewise regular surface S =

Figure 3.13: A piecewise regular surface S = S1 ∪ S2 with boundary.

S1 ∪ S2 with a piecewise C1 boundary. The intersection S1 ∩ S2 is the dotted line
∂S1 ∩ ∂S2. Observe the behaviour of the tangent vectors on this interior boundary.

With these preparations it is hard to show Stokes theorem.

Theorem 3.56 (Stokes theorem). Let U ⊆ R3 be an open set, let v : U → R3 be
a vector field on U , and let S =

⋃n
k=1 Sk ⊆ U be a piecewise regular surface with a

piecewise C1 boundary and with normal N . Then we have∫
S

⟨curlv,N⟩ dA =

∫
∂S

⟨v, t⟩ ds , (3.41)

where t is the tangent of the boundary ∂S.

Proof. By Lemma 3.54 the theorem holds for each surface Sk, i.e.,∫
S

⟨curlv,N⟩ dA =
n∑

k=1

∫
Sk

⟨curlv,N⟩ dA =
n∑

k=1

∫
∂Sk

⟨v, t⟩ ds .
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Now we only have to note that if the normals of the surfaces are in agreement with
each other then the tangent vectors of two neighbouring surfaces are opposite of each
other. That means that the integrals over the interior boundaries (the dotted curve
in Figure 3.13) cancels and we are left with the integral over the exterior boundary
(the solid curve in Figure 3.13).

As integration over the empty set is yields zero we immediately obtain the fol-
lowing result.

Corollary 3.57. Let U ⊆ R3 be an open set, let v : U → R3 be a vector field on U ,
and let S =

⋃n
k=1 Sk ⊆ U be a piecewise regular surface without boundary, i.e., we

have only interior boundaries, and with normal N . Then we have∫
S

⟨curlv,N⟩ dA = 0 . (3.42)

A surface without a boundary is called a closed surface.

Example 3.23. In Example 3.21 we saw that the curl of vector field v(x, y, z) =
(−y, x, x2 + y2 + z2) is curlv = (2y,−2x, 2). Now consider the truncated unit
sphere in Figure 3.14. It is cut at z =

√
2
2

so the boundary is a circle with radius

Figure 3.14: The unit sphere cut at z0 =
√
2
2

.

r0 =
√

1− z20 =
√
2
2

. Suppose we want to find the integral of the normal component
of curlv over this surface. Using Stokes theorem we have∫

S

⟨curlv,N⟩ dA =

∫
∂S

⟨v, t⟩ ds .

We can parameterise the boundary ∂S by x(t) = r0(cos t, sin t, 1), t ∈ [0, 2π] (we
are using the outward normal). The derivative is x′(t) = r0(− sin t, cos t, 0). Using

date/time: January 15, 2024/20:45 80 of 112



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.7. EXERCISES

(3.24) the line integral of v along the ∂S is∫
∂S

⟨v, t⟩ ds =
∫ 2π

0

⟨v(x(t)),x′(t)⟩ dt

=

∫ 2π

0

〈−r0 sin t
r0 cos t

1

 ,

−r0 sin t
r0 cos t

0

〉 dt

=

∫ 2π

0

(r20 sin
2 t+ r20 cos

2 t) dt =

∫ 2π

0

r20 dt = 2πr20 = 2π
2

4
= π .

We can get the result even easier. The boundary ∂S is also the boundary of the disc
D = {(x, y, z) | x2 + y2 ≤ r20 ∧ z = r0}. The normal of this disc is ND = (0, 0, 1) so
we have ⟨curlv,ND⟩ = 2∫

S

⟨curlv,N⟩ dA =

∫
∂S

⟨v, t⟩ ds . =
∫
D

⟨curlv,ND⟩ dA =

∫
D

2 dA

= 2× area of D = 2πr20 = π .

3.7 Exercises

Exercise 3.1. Formally calculate

 ∂
∂x1

...
∂

∂xn

 ·

(
v1(x1,...,xn)

...
vn(x1,...,xn)

)
.

Exercise 3.2. Show that the line integral of a vector field (3.24) does not depend
on the parametrisation.

Exercise 3.3. Let f : [a1, b1]×· · ·× [an, bn] → R be uniformly continuous and define
g : [a1, b1]× · · · × [an−1, bn−1] → R by

g(x1, . . . , xn−1) =

∫ bn

an

f(x1, . . . , xn−1, t) dt .

Show that g is uniformly continuous.

Exercise 3.4. Formally calculate

(
∂
∂x
∂
∂y
∂
∂z

)
×
(

v1(x,y,z)
v2(x,y,z)
v3(x,y,z)

)
.

Exercise 3.5. Check Example 3.20 and 3.21.

Exercise 3.6. What is the result in Example 3.23 if we cut the unit sphere at z = h
for some h ∈ [−1, 1]?
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Appendix A

More on the real numbers

A.1 Ordered fields
What kinds of numbers do we know?

• The natural numbers or positive integers :

N = Z+ = {1, 2, 3, . . . } . (A.1)

• The negative integers :

Z− = {−1,−2,−3, . . . } . (A.2)

• The non negative integers :

Z0 = {0, 1, 2, 3, . . . } . (A.3)

• The integers :
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } . (A.4)

• The rational numbers :

Q =

{
p

q

∣∣∣∣p ∈ Z, q ∈ N
}

. (A.5)

• The real numbers R and the complex numbers C.

We always consider these different sets of numbers as subsets of each other:
N ⊂ Z0 ⊂ Z ⊂ Q ⊂ R ⊂ C . In [1] we saw how to get from the real numbers R to
the complex numbers C. And on the intuitive level it is perhaps obvious how first
to get from the natural numbers N to Z0, from Z0 to the integers Z and then to
the rational numbers Q. There are mathematical precise algebraic constructions for
each of these steps, but we will not describe those.
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The step from Q to R is different in nature. On the intuitive level we discover
that we miss some numbers like

√
2 and π so we include those, but exactly what

numbers are “missing” and how do we add and multiply with them? An other,
geometrical or physical, viewpoint is to consider the rational numbers as certain
points on a line and then consider the real numbers as all points on the line, but
again, it is not obvious how to add and multiply points on a line.

The six axioms of an ordered field (Definition 1.1) implies other well known
properties. Using (1.5) (with c = −a) we have

∀a ∈ F : 0 ≤ a =⇒ −a ≤ 0 , ∀a ∈ F : a ≤ 0 =⇒ 0 ≤ −a . (A.6)

As the ordering is total this implies

∀a ∈ F : 0 ≤ a ∨ 0 ≤ −a . (A.7)

As 0 · b = 0 for all b and using (1.6) we have

∀a, b ∈ F : 0 ≤ a ∧ 0 ≤ b =⇒ 0 ≤ a · b . (A.8)

As a2 = (−a)2 this and (A.7) implies

∀a ∈ F : 0 ≤ a2 . (A.9)

As 12 = 1 this in turn implies
0 ≤ 1 . (A.10)

If 0 ≤ a, a ̸= 0 and a−1 ≤ 0 then we have 1 = a · a−1 ≤ a · 0 = 0 but that would
imply that 1 = 0. So we must have

∀a ∈ F \ {0} : 0 ≤ a =⇒ 0 ≤ a−1 . (A.11)

Given the ordering “≤” on the field F we can define new relations “<”, “≥”, and
“>” on F by

a < b ⇐⇒ a ≤ b ∧ a ̸= b , a ≥ b ⇐⇒ b ≤ a , a > b ⇐⇒ b < a . (A.12)

They satisfied the expected rules know from Q and R:

∀a ∈ F : a ≥ a , (A.13)
∀a, b ∈ F : a ≥ b ∧ b ≥ a =⇒ a = b , (A.14)

∀a, b, c ∈ F : a ≥ b ∧ b ≥ c =⇒ a ≥ c , (A.15)
∀a, b ∈ F : a ≥ b ∨ b ≥ a , (A.16)

∀a, b, c ∈ F : a ≥ b =⇒ a+ c ≥ b+ c , (A.17)
∀a, b, c ∈ F : a ≥ b ∧ c ≥ 0 =⇒ a · c ≥ b · c . (A.18)
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As a ̸= b ⇒ a+ c ̸= b = c for all a, b, c ∈ F we have

∀a, b, c ∈ F : a < b ∧ b < c =⇒ a < c , (A.19)
∀a, b, c ∈ F : a < b =⇒ a+ c < b+ c , (A.20)
∀a, b, c ∈ F : a < b ∧ 0 < c =⇒ a · c < b · c . (A.21)
∀a, b, c ∈ F : a > b ∧ b > c =⇒ a > c , (A.22)
∀a, b, c ∈ F : a > b =⇒ a+ c > b+ c , (A.23)
∀a, b, c ∈ F : a > b ∧ c > 0 =⇒ a · c > b · c . (A.24)

Every total ordered field contains a copy of the integers.

Lemma A.1. If (F,+, ·,≤) is an ordered field then we have a unique map f : Z → F
with f(1) ̸= 1 that preserves the addition, the multiplication, and the ordering. That
is, for all n,m ∈ Z we have f(n + m) = f(n) + f(m), f(nm) = f(n) · f(m), and
n ≤ m ⇒ f(n) ≤ f(m).

Proof. To prove existence we define f on Z recursively by letting

f(0) = 0 ,

f(n) = f(n− 1) + 1 , for n ∈ Z+ ,

f(n) = f(n+ 1)− 1 , for n ∈ Z− .

Observe that this definition immediately tells us that f(1) = 1, f(−1) = −1, and
more general that f(n+ 1) = f(n) + 1 and f(n− 1) = f(n)− 1 for all n ∈ Z.

Let n ∈ Z0 we want to prove that f(−n) = −f(n) using induction on n. The
case n = 0 is trivial and if f(−n) = −f(n) for some n ∈ Z0 then

f(−(n+ 1)) = f(−n− 1) = f(−n)− 1 = −f(n)− f(1)

= −(f(n) + f(1)) = −f(n+ 1) .

If n ∈ Z− then −n ∈ Z+ and we have −f(n) = −f(−(−n)) = −(−f(−n)) = f(−n),
i.e., the equation f(−n) = −f(n) holds for all n ∈ Z.

Let n,m ∈ Z. We first want to prove that f(n + m) = f(n) + f(m) using
induction on m. The case m = 0 is trivial so assume it is true for some m ∈ Z0 then

f(n+m+ 1) = f(n+m) + 1 = f(n) + f(m) + f(1) = f(n) + f(m+ 1) .

Similar if it is true for some m ∈ Z− then

f(n+m− 1) = f(n+m)− 1 = f(n) + f(m) + f(−1) = f(n) + f(m− 1) ,

and we are done. Next we want to prove that f(m ·n) = f(m) ·f(n) for all n,m ∈ Z.
Again by induction on m. The case m = 0 is trivial and if it is true for some m ∈ Z0

then

f((m+ 1) · n) = f(m · n+ n) = f(m · n) + f(n)

= f(m) · f(n) + f(1) · f(n) = (f(m) + f(1)) · f(n) = f(m+ 1) · f(n) .
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Similar, if it is true for some m ∈ Z− then

f((m− 1) · n) = f(m · n− n) = f(m · n)− f(n)

= f(m) · f(n)− f(1) · f(n) = (f(m)− f(1)) · f(n) = f(m− 1) · f(n) ,

and we are done. At this point we have a map Z → F that preserves addition and
multiplication. But we still need to prove that the ordering is preserved.

First we show that if 0 ≤ n then 0 ≤ f(n). We do it by induction on n. The
case n = 0 is trivial, so assume it is true for an n ∈ Z0, i.e., that 0 ≤ f(n). Then
we have 0 ≤ 1 ≤ f(n) + 1 = f(n + 1) and we are done. If we now have n,m ∈ Z
with n ≤ m then 0 ≤ m− n and hence 0 ≤ f(m− n) = f(m)− f(n). Adding f(n)
yields f(n) ≤ f(m) as required.

Uniqueness follows from the fact that the condition f(n) = f(n+0) = f(n)+f(0)
implies that f(0) = 0. Likewise, the condition f(1) = f(1 · 1) = f(1) · f(1) implies
that f(1) = 0 or f(1) = 1. As f(1) ̸= 0 we must have f(1) = 1. The conditions
f(n± 1) = f(n)± f(1) = f(n)± 1 implies that our recursive definition is the only
possibility.

Remark A.2. It is not hard to see that f is injective, c.f. Exercise A.1.
Every total ordered field contains the rational numbers as a subfield.

Theorem A.3. If (F,+, ·,≤) is an ordered field then we have a unique map f : Q →
F, with f(1) ̸= 0 that preserves the addition, the multiplication, and the ordering.
That is, for all x, y ∈ Q we have f(x+ y) = f(x) + f(y), f(x · y) = f(x) · f(y), and
x ≤ y ⇒ f(x) ≤ f(y).

Proof. Lemma A.1 shows that we have a unique map f : Z → F with the required
properties. If we can extend this map to Q then we must have f

(
p
q

)
= f(pq−1) =

f(p) · f(q−1) = f(p) · f(q)−1. So the only possibility is to define f on Q by letting
f
(
p
q

)
= f(p) · f(q)−1 for (p, q) ∈ Z× N. Observe that if n ∈ N then

f

(
np

nq

)
= f(np) · f(nq)−1 = f(n) · f(p) · (f(n) · f(q))−1

= f(n) · f(p) · f(n)−1 · f(q)−1 = f(p) · f(q)−1 = f

(
p

q

)
,

so the map is well defined. We now have

f

(
p

q
+

m

n

)
= f

(
pn+ qm

qn

)
= f(pn+ qm)f(qn)−1

= (f(p) · f(n) + f(q) · f(m)) · (f(q) · f(n))−1

= f(p) · f(n) · f(q)−1 · f(n)−1 + f(q) · f(m) · f(q)−1 · f(n)−1

= f(p) · f(q)−1 + f(m) · f(n)−1 = f

(
p

q

)
+ f

(m
n

)
,
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and

f

(
p

q

m

n

)
= f

(
pm

qn

)
= f(pm) · f(qn)−1 = f(p) · f(m) · f(q)−1 · f(n)−1

= f(p) · f(q)−1 · f(m) · f(n)−1 = f

(
p

q

)
· f
(m
n

)
.

So we now have a well defined map Q → F that preserves addition and multiplica-
tion.

If q ∈ N then f(q) ̸= 0, 0 ≤ f(q) and 0 ≤ f(q)−1. So if 0 ≤ p
q

then 0 ≤ p. Hence
0 ≤ f(p) and 0 = 0 · f(q)−1 ≤ f(p) · f(q)−1 = f

(
p
q

)
.

If m
n

≤ p
q

then n, q > 0 and qm ≤ np. Now f(n), f(q) > 0 and f(q)f(m) =

f(qm) ≤ f(np) = f(n)f(p). Multiplying with the positive number f(n)−1f(q)−1

yields f
(
m
n

)
= f(n)−1f(m) ≤ f(q)−1f(p) = f

(
p
q

)
.

A.2 Infimum and supremum
Some subsets of Q or R have a smallest and/or a largest element some do not. The
closed interval [0, 1] has both a minimum (0) and a maximum (1). The half open
interval [0, 1[ has a minimum (0), but no maximum and the open interval ]0, 1[ has
neither a minimum nor a maximum.

Definition A.4. Let (F,≤) be an ordered set and let A ⊂ F. If there exist an
element a ∈ A such that a ≤ x for all x ∈ A then we say a is the minimum of A and
we write a = minA. If there exist an element a ∈ A such that x ≤ a for all x ∈ A
then we say a is the maximum of A and we write a = maxA.

Definition A.5. Let (F,≤) be an ordered set and let A ⊂ F. If there exist an
element a ∈ F such that a ≤ x for all x ∈ A then we say A is bounded from below
and we say a is a lower bound for A. If there exist an element a ∈ F such that x ≤ a
for all x ∈ A then we say A is bounded from above and we say a is a upper bound
for A.

The intervals [0, 1], [0, 1[, ]0, 1[ has the infimum 0 and the supremum 1.

Definition A.6. Let (F,≤) be an ordered set and let A ⊂ F. If the set of lower
bounds for A has a maximum a then we say a is the infimum of A and we write
a = inf A. If the set of upper bounds for A has a minimum a then we say a is the
supremum of A and we write a = supA.

So if it exists then the infimum is the largest lower bound. Similar, if it exists
the supremum is the smallest upper bound.

Lemma A.7. Let (F,+, ·,≤) be an ordered field. If the set
{

1
n

∣∣n ∈ N
}
⊆ F has an

infimum then it is 0.
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Proof. Assume the opposite, i.e., that a = inf
{

1
n

∣∣n ∈ N
}

and a ̸= 0. As 0 is a
lower bound we have 0 < a and hence a < a + a = 2 · a. As a is the largest lower
bound 2 · a is not a lower bound so we can find n ∈ N such that 1

n
< 2 · a. But

1
2n

= 1
2
· 1
n
< 1

2
· 2 · a = a contradicting that a is a lower bound.

The lemma implies the following results

Corollary A.8. Let (F,+, ·,≤) be an ordered field. If the set
{

1
n

∣∣n ∈ N
}
⊆ F has

an infimum and x, y ∈ F with x < y then there exist a n ∈ N such that 1
n
≤ y − x.

Proof. We have 0 < y − x and 0 is the largest lower bound, so y − x is not a lower
bound and the result follows.

Corollary A.9. Let (F,+, ·,≤) be an ordered field. If the set
{

1
n
| n ∈ N

}
⊆ F has

an infimum and x ∈ F then there exist a n ∈ N such that x ≤ n.

Proof. Assume the opposite, i.e., that we have an x ∈ F such that n ≤ x for
all n ∈ N. Then 0 < x and hence 0 < x−1 we also have for all n ∈ N that
x−1 = x−1 · 1

n
· n ≤ x−1 · 1

n
· x = 1

n
. But that means that x−1 is a lower bound,

contradicting that the infimum is 0.

If (F,+, ·,≤) is an ordered field and a, b ∈ F with a ≤ b then we can define the
intervals

[a, b] = {x ∈ F | a ≤ x ∧ x ≤ b} , [a, b[ = {x ∈ F | a ≤ x ∧ x < b} ,
]a, b] = {x ∈ F | a < x ∧ x ≤ b} , ]a, b[ = {x ∈ F | a < x ∧ x < b} ,

The first is called a closed interval, the last an open intervals and the other two are
called half open intervals. We also introduce the following notation for half lines :

[a,∞[ = {x ∈ F | a ≤ x} , ]−∞, b] = {x ∈ F | x ≤ b} ,
]a,∞[ = {x ∈ F | a < x} , ]−∞, b[ = {x ∈ F | x < b} ,

Corollary A.10. Let (F,+, ·,≤) be an ordered field. If the set
{

1
n

∣∣n ∈ N
}
⊆ F has

an infimum and x ∈ F then there exist a n ∈ N such that x ∈ [n, n+ 1[.

Proof. By Corollary A.9 we can find n1, n2 ∈ N such that x ≤ n2 and −x ≤ n1 and
hence x ∈ [−n1, n2]. As [−n1, n2] ⊆

⋃n2

n=−n1
[n, n + 1[ we have an n ∈ {−n1,−n1 +

1, . . . .n2} such that x ∈ [n, n+ 1[.

Theorem A.11. Let (F,+, ·,≤) be an ordered field. The the following three condi-
tions are equivalent

1. Every non empty subset A ⊆ F that is bounded from below has an infimum.

2. Every non empty subset A ⊆ F that is bounded from above has a supremum.
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3. If [a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [an, bn] ⊇ . . . is a nested sequence of closed
intervals such that ∀k ∈ N ∃n0 ∈ N : n > n0 ⇒ bn − an ≤ 1

k
then there exists

a ∈ F such that
⋂

n∈N[an, bn] = {a}. (The nested interval theorem).
Proof. If A ⊆ F then we put −A = {x ∈ F | −x ∈ A}, i.e., we simply multiply all
elements of A by −1. If a is a lower bound for A then −a is an upper bound for
−A. So if B is the set of lower bounds for A then −B is the set of upper bounds for
−A. Also if b is a maximum for B then −b is a minimum for −B. So if A has an
infimum then −A has a supremum and sup−A = − inf A. This shows that 1. and
2. are equivalent.

2. ⇒ 3.: The set {an | n ∈ N} is bounded from above by b1 so we can put
a = sup{an | n ∈ N}. Now a is an upper bound for {an | n ∈ N} (the smallest) so
an ≤ a for all n ∈ N. Furthermore, every bn is an upper bound for {an | n ∈ N} so
a ≤ bn for all n ∈ N. That is, a ∈ [an, bn] for all n ∈ N and hence a ∈

⋂
n∈N[an, bn].

3. ⇒ 1. : Let A ⊆ F be non empty and bounded from below. Choose a lower
bound a1 for A and an element b1 ∈ A. If a1 is the largest lower bound we are
done (inf A = a1). If b1 is the minimum of A we are done (inf A = b1). Otherwise
consider 1

2
(a1 + b1) ∈ F. If it is a lower bound for A we put a2 = 1

2
(a1 + b1) and

b2 = b1. Otherwise we can find b2 ∈ A such that b2 < 1
2
(a1+ b1) and we put a2 = a1.

In the first case we have b2 − a2 = b1 − 1
2
(a1 + b1) =

b1−a1
2

and in the second case we
have b2 − a2 ≤ 1

2
(a1 + b1)− a1 =

b1−a1
2

. In both cases b2 − a2 ≤ b1−a1
2

.
Continuing this we way we either stop because we have found the infimum or

we have a set of lower bounds {an ∈ F | n ∈ N} for A and a set of elements
{bn ∈ A | n ∈ N} in A such that an ≤ an+1 and bn+1 ≤ bn for all n ∈ N, i.e.,
[an+1, bn+1] ⊆ [an, bn]. Furthermore, bn − an ≤ b1−a1

2n
.

First we note that 0 is a lower bound for
{

1
n
| n ∈ N

}
and any larger lower

bound must be an element of
[
0, 1

n

]
for all n ∈ N. As 0 ∈

⋂
n∈N
[
0, 1

n

]
and hence⋂

n∈N
[
0, 1

n

]
= {0} we see that 0 is the largest lower bound, i.e., 0 = inf

{
1
n
| n ∈ N

}
.

Now Corollary A.9 tells us that there exists a K ∈ N such that b1 − a1 ≤ K and
hence bn − an ≤ K

2n
. By Condition 3 there exists an element a ∈ F such that⋂

n∈N[an, bn] = {a}. We want to show that a is the infimum for A.
First we show that a is a lower bound. Assume the opposite, then there exists

an x ∈ A such that x < a. By Corollary A.8 we have a k ∈ N such that 1
k
≤ a− x.

Next we can find an n ∈ N such that bn − an ≤ K
2n

< 1
k
≤ a− x. This implies that

x < an + a− bn. But a ∈ [an, bn] so a ≤ bn and hence x < an contradicting that an
is a lower bound for A.

Finally we show that a is the largest lower bound. Assume the opposite, then
there exists a lower bound x ∈ F such that a < x. By Corollary A.8 we have a k ∈ N
such that 1

k
≤ x−a. Next we can find an n ∈ N such that bn−an ≤ K

2n
< 1

k
≤ x−a.

This implies that x > bn + a − an. But a ∈ [an, bn] so an ≤ a and hence x > bn
contradicting that x is a lower bound for A.

Recall that according to Theorem A.3 we can consider the rational numbers as
a sub field of any ordered field. We first show that if an ordered field F has the
properties in Theorem A.11 then Q is dense in F in the following sense:
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Lemma A.12. Let (F,+, ·,≤) be an ordered field where all subsets bounded from
below has an infimum. If x, y ∈ F and x < y then there exist p

q
∈ Q such that

p
q
∈ [x, y].

Proof. As x < y Corollary A.8 tells us that we can find an n ∈ N such that 1
n
≤ y−x

and hence 1 ≤ n·y−n·x. Corollary A.10 give us n1, n2 ∈ N such that n·x ∈ [n1, n1+1[
and n · y ∈ [n2, n2 +1[. As 1 ≤ n · y− n · x we must have n1 +1 ≤ n2. We now have
nx < n2 ≤ y and hence n2

n
∈ [x, y].

Corollary A.13. Let (F,+, ·,≤) be an ordered field where all subsets bounded from
below has an infimum. If x ∈ F then x = inf

{
p
q
∈ Q

∣∣∣x < p
q

}
.

Proof. Let A =
{

p
q
∈ Q

∣∣∣x < p
q

}
. As x is a lower bound for A we have an infimum

y = inf A and x ≤ y. If x ̸= y then Lemma A.12 tells us that we can find an p
q
∈ Q

such that p
q
∈ [x, x+y

2
], but then p

q
< y contradicting that y is a lower bound. That

is, we must have x = y = inf A.

If we accept that R satisfies the nested interval theorem then this property com-
pletely characterise the real numbers.

Theorem A.14. If (F,+, ·,≤) is an ordered field where all subsets bounded from
below has an infimum. Then there exist a unique isomorphism R → F, i.e., a unique
bijective map f : R → F such that we for all x, y ∈ R have that f(x+y) = f(x)+f(y),
f(xy) = f(x)f(y), and x ≤ y ⇒ f(x) ≤ f(y).

Proof. First uniqueness: Assume we have an isomorphism R → F. We have the
rational numbers as Q subfields of both R and F. If we restrict f to Q ⊂ R then by
Theorem A.3 it has to be the identity, i.e., if p

q
∈ Q then f

(
p
q

)
= p

q
. Let x ∈ R and

consider the set A = Q ∩ [x,∞[⊂ R. As f preserves the ordering a lower bound for
a is mapped to a lower bound for f(A), i.e., we have f(x) ≤ inf f(A) = inf

{
f
(
p
q

)
∈

F
∣∣ x ≤ p

q

}
. As the same is true for the set of lower limits of A we must have

f(x) = inf f(A) = inf

{
p

q
∈ F
∣∣∣∣p ∈ Z ∧ q ∈ N ∧ x ≤ p

q

}
.

We now have uniqueness and we also have a well defined map f : R → F. We need
to show that f is bijective and preserves addition, multiplication, and the ordering.

The ordering is preserved: Let x, y ∈ R and assume x < y. Then we can find
m
n
∈ Q such that x < m

n
< y. But then

inf

{
p

q
∈ F
∣∣∣∣p ∈ Z ∧ q ∈ N ∧ x ≤ p

q

}
<

m

n

< inf

{
p

q
∈ F
∣∣∣∣p ∈ Z ∧ q ∈ N ∧ y ≤ p

q

}
,
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i.e., f(x) < f(y). This also proves injectivity.
Surjective: Let y ∈ F and consider A =

{
p
q
∈ F

∣∣ p ∈ Z ∧ q ∈ N ∧ y ≤ p
q

}
. We

can consider A as a subset of Q and hence as a subset of R if we put x = inf
{

p
q
∈

R
∣∣ p ∈ Z ∧ q ∈ N ∧ y ≤ p

q

}
. Then we have f(x) = y.

Preserves addition: Let x, y ∈ R. Put A = Q ∩ [x,∞[, B = Q ∩ [y,∞[, and
define

A+B =

{
p

q
+

m

n
∈ Q

∣∣∣∣pq ∈ A ∧ m

n
∈ B

}
.

If a and b are lower bounds for A and B, respectively then a + b is a lower bound
for A+B using this is not hard to see that x+ y = inf A+ inf B = inf(A+B) and

f(x+ y) = inf f(A+B) = inf

{
p

q
+

m

n
∈ Q

∣∣∣∣pq ∈ A ∧ m

n
∈ B

}
= inf

{
p

q
+

m

n
∈ Q

∣∣∣∣x ≤ p

q
∧ y ≤ m

n

}
= inf

{
p

q
∈ Q

∣∣∣∣x ≤ p

q

}
+ inf

{m
n

∈ Q
∣∣∣y ≤ m

n

}
= f(x) + f(y) .

Preserves multiplication: First we note that x+(−x) = 0 implies that f(x)+f(−x) =
f(0) = 0, i.e., f(−x) = −f(x).

Let x, y ∈ R if either x or y is zero we clearly have f(xy) = f(0) = 0 = f(x)·f(y).
So we first assume that x, y > 0 and let A = Q ∩ [x,∞[ and B = Q ∩ [y,∞[. We
now define

A ·B =

{
p

q

m

n
∈ Q

∣∣∣∣pq ∈ A ∧ m

n
∈ B

}
.

If a and b are lower bounds for A and B, respectively then ab is a lower bound for.
A ·B using this is not hard to see that xy = inf A · inf B = inf(A ·B) and

f(xy) = inf f(A ·B) = inf

{
p

q
· m
n

∈ Q
∣∣∣∣pq ∈ A ∧ m

n
∈ B

}
= inf

{
p

q
· m
n

∈ Q
∣∣∣∣x ≤ p

q
∧ y ≤ m

n

}
= inf

{
p

q
∈ Q

∣∣∣∣x ≤ p

q

}
· inf

{m
n

∈ Q
∣∣∣y ≤ m

n

}
= f(x) · f(y) .

We still miss the cases where one or both numbers are negative. We have

f((−x)y) = f(−xy) = −f(xy) = −f(x) · f(y) = f(−x) · f(y) .

Similar

f((−x)(−y)) = f(xy) = f(x)f(y)

= (−f(−x)) · (−f(−y)) = f(−x) · f(−y) .

date/time: January 15, 2024/20:45 93 of 112



APPENDIX A. MORE ON THE REAL NUMBERSA.2. INFIMUM AND SUPREMUM

Before we give a construction of the real numbers we show a perhaps surprising
consequence of the nested interval theorem. We have seen that the rational numbers
are dense in the real numbers. But in a sense that will be made precise below there
are extremely more real numbers that rational numbers. We can count the rational
numbers but not the real numbers.

Definition A.15. A set A is called countable if it is finite or there exists a bijective
map N → A. Otherwise A is called uncountable

Clearly N is countable. We define a bijective map f : N → Z by

f(n) =

{
n
2
, if n is even ,

1−n
2

, if n is odd ,

so Z is countable. The sequence f(1), f(2), · · · is 0, 1,−1, 2,−2, 3, · · · . But also
Z × Z is countable, see Figure A.1 left, where we visit each point of Z × Z exactly

Figure A.1: Spiralling around we visit all points of Z × Z exactly once. Skipping
some points and considering p

q
we visit all points of Q exactly once.

once, i.e., we have a sequence (pn, qn) ∈ Z×Z such that Z×Z = {(pn, qn) | n ∈ N and
n ̸= m ⇒ (pn, qn) ̸= (pm, qm). By skipping all points with qn ≤ 0 and considering
pn
qn

we get a surjective map N → Q and by skipping numbers we already have we
get a bijective map, i.e., Q is countable, see Figure A.1 right. The first few rational
numbers are 1, 0,−1, 2, 1

2
,−1

2
,−2, 3, 3

2
, 2
3
, 1
3
,−1

3
, · · · .

We have just seen that Q is countable and now we will show that R is uncount-
able.

Theorem A.16. The real numbers are uncountable.

Proof. Assume we have a bijective map N → R : n → xn. We can find an interval
[a1, b1] with a1 < b1 such that x1 /∈ [a1, b1], e.g. a1 = x1+1 and b1 = x1+2. We now
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recursively want to find nested intervals [an, bn] ⊆ [an−1, bn−1] such that xn /∈ [an, bn]
and bn − an = b1−a1

3n
.

Assume we have found [an, bn] ⊆ [an−1, bn−1] ⊆ · · · ⊆ [a1, b1], such that ak /∈
[ak, bk] and bk−ak =

b1−a1
3k

for k = 1, . . . , n. Now consider the points c = bn+2an
3

and
d = 2bn+an

3
. They divide the interval [an, bn] into three parts [an, c], [c, d], and [d, bn]

with length bn−an
3

. The number xn+1 cannot be an element of all three intervals so
we can pick one of them that does not contain xn+1. Call it [an+1, bn+1]. We now
have that [an+1, bn+1] ⊆ [an, bn], that xn+1 /∈ [an+1, bn+1], and that bn+1 − an+1 =
bn−an

3
= b1−a1

3n+1 as required.
As bn − an = b1−a1

3n
→ 0 for n → ∞. The nested interval theorem tells us

that there exists a number x ∈ R such that
⋂

n∈N[an, bn] = {x}. Now x ∈ [an, bn]
and xn /∈ [an, bn] so x ̸= xn for all n ∈ N and that contradicts that the map
N → R : n 7→ xn is surjective.

A.3 A construction of the real numbers

There are more than one way to construct the real numbers, i.e., an ordered field
where every non empty set bounded from below has an infimum. But Theorem A.14
shows that they all yield the same result.

The starting point for the approach we present is Corollary A.13, where we saw
that in the end we must have x = inf(]x,∞[∩Q) , or equivalent x = sup(]−∞, x]∩Q) ,
If A ⊆ Q is a subset of the rational numbers then the complement is A∁ = Q \ A.
Observe that (]x,∞[∩Q)∁ =] −∞, x] ∩ Q. Halflines in Q, like A =]x,∞[∩Q, have
the following properties

A ̸= ∅ , (A.25)
A is bounded from below , (A.26)

∀x ∈ A ∀y ∈ Q : x ≤ y =⇒ y ∈ A , (A.27)
∀x ∈ A ∃y ∈ A : y < x . (A.28)

Remark A.17. Condition (A.28) says that A does not have a minimum. In particular,
if x ∈ Q then A = [x,∞[∩Q ⊆ Q does not satisfies the condition.

Lemma A.18. If A satisfies Condition (A.27) and a ∈ A∁ then a is a lower bound
for A.

Proof. Assume a ∈ A∁ and there exist x ∈ A such that x < a then (A.27) says that
a ∈ A, a contradiction.

Conversely,

Lemma A.19. If A satisfies Condition (A.28) and a is a lower bound for A then
a ∈ A∁.
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Proof. Assume a is a lower bound for A then Condition (A.28) tells us that a /∈
A.

All in all we have

Lemma A.20. If A satisfies Condition (A.27) and (A.28) then A∁ is the set of
lower bounds for A.

This inspires the following definition of the real numbers as a set.

Definition A.21. The set of real numbers is

R = {A ⊂ Q | A satisfies Condition (A.25), (A.26), (A.27), and (A.28)}

We now have to equip this space with an addition, a multiplication, and an
ordering such that all the axioms of an ordered field is satisfied. If ]x,∞[ and ]y,∞[
are half lines then we have ]x,∞[⊃]y,∞[ if and only if x ≤ y. So we define the
ordering by

Definition A.22. Let A,B ∈ R we say that A ≤ B if A ⊇ B.

We need to show that this defines a total ordering on R, i.e., that it is reflexive,
antisymmetric, transitive, and total, see Definition 1.1.

Lemma A.23. Definition A.22 defines a total ordering on R.

Proof. Left as Exercise A.2 and A.3.

Recall that if A,B ⊆ Q are arbitrary sets then

A+B = {x+ y ∈ Q | x ∈ A ∧ y ∈ B} .

We will use this as the definition of addition in R, but first we need

Lemma A.24. If A,B ∈ R then A+B ∈ R.

Proof. Assume A,B ∈ R. As A,B ̸= ∅ there exists (x, y) ∈ A × B and then
x+ y ∈ A+B so A+B ̸= ∅. So (A.25) is satisfied.

As A and B are bounded from below we can find a, b ∈ Q such that a ≤ x for
all x ∈ A and b ≤ y for all y ∈ B but then a+ b ≤ x+ y for all (x, y) ∈ A×B, i.e.,
A+B is bounded from below by a+ b. So (A.26) is satisfied.

Suppose (x, y) ∈ A×B, z ∈ Q and x+ y ≤ z. Then x ≤ z− y and as A ∈ R we
have z − y ∈ A and hence z = (z − y) + y ∈ A+B. So (A.27) is satisfied.

Suppose c /∈ A + B. We have just shown that A + B satisfies (A.27) so c is a
lower bound for A + B. If c = x + y where (x, y) ∈ A × B then x must be a lower
bound for A and hence a minimum for A but that contradicts Condition (A.28). So
A+B satisfies Condition (A.28).
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Definition A.25. Addition R× R → R is defined by

A+B = {x+ y ∈ Q | x ∈ A ∧ y ∈ B} .

Lemma A.24 says that addition is well defined, but we still need to show that it
satisfies Condition 1, 2, 4, and 5 in [1, Definition 6.1] and that it is compatible with
the ordering (Condition (1.5) in Definition 1.1).

Lemma A.26. Addition satisfies the commutative law and the associative law,

A+B = B + A , (A+B) + C = A+ (B + C) .

Proof. Left as Exercise A.4 and A.5.

Lemma A.27. The set O = {x ∈ Q | 0 < x} is a neutral element for addition in
R.

Proof. Left as Exercise A.6.

Lemma A.28. Let A ∈ R and X = {−x | x ∈ A}. Then

−A =

{
(X \ {maxX})∁ , if X has a maximum ,

X∁ , otherwise ,

is an additive inverse for A.

Proof. Left as Exercise A.7.

Lemma A.29. Addition in R is compatible with the ordering.

Proof. Left as Exercise A.8.

Lemma A.30. Let A ∈ R then A ≤ O ⇐⇒ O ≤ −A

Proof. Left as Exercise A.9.

Multiplication is a bit harder to define. Observe that if we for subsets A,B ⊆ Q
put

A⊙B = {xy ∈ Q | x ∈ A ∧ y ∈ b} , (A.29)

and have a, b ∈ Q+ then

]a,∞[⊙ ]b,∞[=]ab,∞[ , ]− a,∞[⊙ ]b,∞[=]−∞,∞[ .

Definition A.31. The non negative real numbers are

R0 = {A ∈ R | O ≤ A} . (A.30)

The positive real numbers are

R+ = {A ∈ R | O < A} . (A.31)

The negative real numbers are

R− = {A ∈ R | A < O} . (A.32)
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Lemma A.32. We have the following characterisations

R0 = {A ∈ R | A is bounded from below by 0} = {A ∈ R | 0 /∈ A} , (A.33)
R+ = {A ∈ R | A is bounded from below by a positive number} , (A.34)
R− = {A ∈ R | A contains a negative number} = {A ∈ R | 0 ∈ A} . (A.35)

Proof. Left as Exercise A.10.

Lemma A.33. If A,B ∈ R0 then A⊙B ∈ R0

Proof. We have A,B ̸= ∅ so there exists x ∈ A and y ∈ B then xy ∈ A ⊙ B. So
A⊙B ̸= ∅ and (A.25) is satisfied.

If x ∈ A and y ∈ B then x, y > 0 hence xy > 0 and we see that A⊙B is bounded
from below by 0. So (A.26) is satisfied.

If x ∈ A, y ∈ B, z ∈ Q, and 0 < xy ≤ z then 1 ≤ z
xy

. Hence x ≤ x z
xy

= z
y

so
z
y
∈ A and z = z

y
y ∈ A⊙B. So (A.27) is satisfied.

If x ∈ A and y ∈ B then we can find x′ ∈ A such that x′ < x. This implies that
x′y ∈ A⊙B satisfies x′y < xy. So (A.28) is satisfied.

Finally, 0 is a lower bound for both A and B. So if x, y ∈ A × B then 0 ≤ x, y
and hence 0 ≤ xy, i.e., 0 is lower bound for A⊙B and A⊙B ∈ R0.

Definition A.34. Multiplication R× R → R is defined by

A ·B =


A⊙B , if A,B ∈ R0 × R0 ,

−(−A⊙B) , if A,B ∈ R− × R0 ,

−(A⊙−B) , if A,B ∈ R0 × R− ,

−A⊙−B , if A,B ∈ R− × R− .

(A.36)

It follows from Lemma A.33 that this is well defined. The details are left as
Exercise A.11.

We still need to show that it satisfies Condition 1, 2, 3, 4, and 6 in [1, Defi-
nition 6.1] and that it is compatible with the ordering (Condition (1.5) in Defini-
tion 1.1)

Lemma A.35. Multiplication satisfies the commutative law and the associative law,

A ·B = B · A , (A ·B) · C = A · (B · C) .

Proof. Left as Exercise A.12 and A.13.

Lemma A.36. The set I = {x ∈ Q | 1 < x} is a neutral element for multiplication
in R.

Proof. Left as Exercise A.14.
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Lemma A.37. Let A ∈ R if A ̸= O then

A−1 =

{{
1
x

∣∣x ∈ A
}
, A ∈ R+ ,

−(−A)−1 , A ∈ R− ,

is a multiplicative inverse for A.

Proof. Left as Exercise A.15.

Lemma A.38. Multiplication in R is compatible with the ordering.

Proof. Left as Exercise A.16.

We now have that (R,+, ·,≤) is an ordered field. All that is left is to prove that
it satisfies the nested interval theorem or equivalently that every subset bounded
from below has an infimum. This is surprisingly easy.

Lemma A.39. Let A ⊆ R be non empty and bounded from below. Then

infA =
⋃
A∈A

A . (A.37)

Proof. We need to show that
⋃

A∈AA satisfies the Conditions (A.25) , (A.26), (A.27),
and (A.28). That it is a lower bound for A, i.e., that

⋃
A∈AA ≤ A for all A ∈ A,

and finally if
⋃

A∈A A ≤ B for some B ∈ R and B is a lower bound for A then
B =

⋃
A∈A A. This is left as Exercise A.17, A.18 and A.19.

This proves

Theorem A.40. The real numbers R satisfies one and hence all three properties in
Theorem A.11.

Lemma A.41. The map f : Q → R by f(x) =]x,∞[ preserves addition, multipli-
cation, and the ordering and f(1) is the identity in R. That is, it makes Q into a
subfield of R.

Proof. That f(1) is the identity is obvious. We need to show that f(x + y) =
f(x) + f(y), f(xy) = f(x) · f(y), and that x ≤ y =⇒ f(x) ≤ f(y). This is left as
Exercise A.20, A.21, and A.22.

If we identify Q with its image in R then Lemma A.12 tells us that Q is dense
in R: Between any two distinct real numbers is a rational number. At this point we
can stop thinking about the real numbers as halflines in Q and just think of them as
introducing new irrational numbers so as to “plug all holes in Q”. Rational numbers
have a decimal expansion that are periodically, e.g. 743

333
= 2.23 123 123 · · · and now

we introduce numbers with arbitrary decimal expansions. e.g. π = 3.14159265 · · · .
By truncating the decimal expansion we obtain a rational approximation to a given
real number and inside a computer that is normally all we have. So what is the
point of all this? The point is that we now know that R has the nested interval
property. That can only be proved rigorously if we have a precise definition of R.
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A.4 Exercises
Exercise A.1. Prove that the map f : Z → F in Lemma A.1 is injective. Hint: Use
that f preserves the ordering.

Exercise A.2. Show that that Definition A.22, (A ≤ B ⇐⇒ A ⊇ B) defines an
ordering on R, i.e., it is

• Reflexive: A ≤ A for all A ∈ R.

• Antisymmetric: A ≤ B ∧B ≤ A ⇒ A = B for all A,B ∈ R.

• Transitive: A ≤ B ∧B ≤ C ⇒ A ≤ C for all A,B,C ∈ R.

Exercise A.3. Show the ordering on R is total, i.e., for all A,B ∈ R we have A ≤ B
and/or B ≤ A.

Exercise A.4. Show that addition in R (A + B = {x + y | x ∈ A ∧ y ∈ B}) is
commutative, i.e., A+B = B + A for all A,B ∈ R

Exercise A.5. Show that addition in R is associative, i.e., (A+B)+C = A+(B+C)
for all A,B,C ∈ R.

Exercise A.6. Show that O = {x ∈ Q | 0 < x} is a neutral element for addition in
R.

Exercise A.7. Show that if A ∈ R and X = {−x | x ∈ A}. Then

−A =

{
(X \maxX)∁ , if X has a maximum ,

X∁ , otherwise ,

is an additive inverse for A. You need to show that −A ∈ R and that A+(−A) = O.

Exercise A.8. Show that addition in R is compatible with the ordering, i.e., A ≤
B ⇒ A+ C ≤ B + C for all A,B,C ∈ R.

Exercise A.9. Show that A ≤ O ⇐⇒ O ≤ −A for all A ∈ R.

Exercise A.10. Show that

R0 = {A ∈ R | A is bounded from below by 0} = {A ∈ R | 0 /∈ A} ,
R+ = {A ∈ R | A is bounded from below by a positive number} ,
R− = {A ∈ R | A contains a negative number} = {A ∈ R | 0 ∈ A} .

Exercise A.11. Using Lemma A.33 show that multiplication R× R → R (Defini-
tion A.34) is well defined, i.e., that if A,B ∈ R then A ·B ∈ R.

Exercise A.12. Show that multiplication R × R → R is commutative, i.e., that
A ·B = B · A for all A,B ∈ R.
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Exercise A.13. . Show that multiplication R × R → R is associative, i.e., that
(A ·B) · C = A · (B · C) for all A,B,C ∈ R.

Exercise A.14. Show that I = {x ∈ Q | 1 < x} is a neutral element for multipli-
cation in R.

Exercise A.15. Show that if A ∈ R if A ̸= O then

A−1 =

{{
1
x

∣∣x ∈ A
}
, A ∈ R+ ,

−(−A)−1 , A ∈ R− ,

is a multiplicative inverse for A.

Exercise A.16. Show that multiplication in R is compatible with the ordering, i.e.,
if A ≤ B and O ≤ C then A · C ≤ B · C.

Exercise A.17. Show that if A ⊂ R is non empty and bounded from below then⋃
A∈AA ∈ R.

Exercise A.18. Show that if A ⊂ R is non empty and bounded from below then⋃
A∈A A is a lower bound for A.

Exercise A.19. Let A ⊂ R be non empty and bounded from below. Show that if
B ∈ R is a lower bound for A and

⋃
A∈A A ≤ B then B =

⋃
A∈AA.

Exercise A.20. Let f : Q → R be defined by by f(x) =]x,∞[. Show that f(x+y) =
f(x) + f(x) for all x, y ∈ Q.

Exercise A.21. Let f : Q → R be defined by by f(x) =]x,∞[. Show that f(xy) =
f(x) · f(x) for all x, y ∈ Q.

Exercise A.22. Let f : Q → R be defined by by f(x) =]x,∞[. Show that x ≤ y ⇒
f(x) ≤ f(y).
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Appendix B

Properties of normed vector spaces

Let ∥ · ∥2 be the usual euclidean norm on Rn, i.e, ∥x∥2 =
√

|x1|2 + · · ·+ |xn|2.

Theorem B.1. If (xm)m∈N is a bounded sequence in Rn then it has a convergent
subsequence.

Proof. We use induction on the dimension n. The case n = 1 is Lemma 1.13.
So assume the lemma is true for some n ∈ N and let ((xm;1, . . . , xm;n+1))m∈N be a
bounded sequence in Rn+1. Then ((xm;1, . . . , xm;n))m∈N is a bounded sequence in Rn.
By the induction hypothesis we have convergent subsequence ((xmk;1, . . . , xmk;n))k∈N.
The sequence (xmk;n+1)k∈N is a bounded sequence in R and by Lemma 1.13 (case
n = 1) it has a convergent subsequence (xmkℓ

;n+1)ℓ∈N. Now ((xmkℓ
;1, . . . , xmkℓ

;n+1))ℓ∈N
is convergent in Rn+1.

Theorem B.2. If F is a closed and bounded subset of Rn and f : F → R is a
continuous function then f attains its maximum and minimum. That is, there exist
a, b ∈ F such that f(a) ≤ f(x) ≤ f(b) for all x ∈ F .

Proof. Let c = infx∈F f(x) and choose a sequence (xm)m∈N in F such that f(xm) →
c for m → ∞. As f is bounded the sequence is bounded and by Theorem B.1 it has a
convergent subsequence (xnk

)k∈N. Let a = limk→∞ xnk
as F is closed we have a ∈ F

and as f is continuous f(a) = limk→∞ f(xnk
) = c. Starting with d = supx∈F f(x) a

similar argument shows that there exists b ∈ F such that f(b) = d.

Lemma B.3. Let ∥ ·∥ be a norm on Rn. There exist C ∈ R such that ∥x∥ ≤ C∥x∥2
for all x ∈ Rn.

Proof. Let e1, . . . en be the standard basis for Rn. If x = (x1, . . . , xn) then we have

∥x∥ =

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ ≤
n∑

i=1

∥xiei∥ =
n∑

i=1

|xi|∥ei∥

≤ max
i=1,...,n

∥ei∥
n∑

i=1

|xi| ≤ (n max
i=1,...,n

∥ei∥)∥x∥2 .
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Corollary B.4. An arbitrary norm ∥ · ∥ on Rn is a continuous function Rn → R
w.r.t. the usual euclidean norm.

Proof. By Lemma B.3 we have ∥x∥ ≤ C∥x∥2 for some C ∈ R. If xn → x for
n → ∞ then we have |∥xn∥− ∥x∥| ≤ ∥x−xn∥ ≤ C∥x−xn∥2 → 0 for n → ∞, i.e.,
∥xn∥ → ∥x∥ for n → ∞.

Lemma B.5. Le Sn−1 = {x ∈ Rn | ∥x∥2 = 1} be the standard unit sphere in Rn.
Then

sup
x∈Sn−1

∥x∥ < ∞ , inf
x∈Sn−1

∥x∥ > 0 .

Proof. As Sn−1 is bounded and closed Theorem B.2 give us a, b ∈ Sn−1 such that
∥a∥ = infx∈Sn−1 ∥x∥ and ∥b∥ = supx∈Sn−1 ∥x∥. We have ∥b∥ ∈ R and as ∥a∥2 = 1
we have a ̸= 0 and hence ∥a∥ > 0.

All norms on Rn are equivalent:

Theorem B.6. Let ∥ · ∥ be a norm on Rn. There exist c, C > 0 such that c∥x∥2 ≤
∥x∥ ≤ C∥x∥2 for all x ∈ Rn.

Proof. The existence of C is Lemma B.3. Let Sn−1 be the standard unit sphere in
Rn and put c = infx∈Sn−1 ∥x∥. By Lemma B.5 we have c > 0.

If x ∈ Rn and x ̸= 0 then
∥∥∥ x
∥x∥2

∥∥∥
2
= 1. Hence

∥∥∥ x
∥x∥2

∥∥∥ > c and

∥x∥ =

∥∥∥∥∥x∥2 x

∥x∥2

∥∥∥∥ = ∥x∥2
∥∥∥∥ x

∥x∥2

∥∥∥∥ ≥ c∥x∥2 .
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The trigonometric functions

The trigonometric functions are defined as the x and y coordinates of a point on the
unit circle, respectively, see Figure C.1 left. If we rotate the picture with the angle ϕ

Figure C.1: The definition of cosine and sine.

then we obtain the picture in Figure C.1 right. On one hand the point (cos θ, sin θ)
is clearly moved to the point (cos(θ + ϕ), sin(θ + ϕ)). On the other hand, rotating
with the angle ϕ is a linear map with the matrix

(
cosϕ − sinϕ
sinϕ cosϕ

)
. Applying this matrix

to the point (cos θ, sin θ) gives us(
cos(θ + ϕ)
sin(θ + ϕ)

)(
cosϕ − sinϕ
sinϕ cosϕ

)(
cos θ
sin θ

)
=

(
cosϕ cos θ − sinϕ sin θ
sinϕ cos θ + cosϕ sin θ

)
,

and we have derived the addition identities for cosine and sine.
We now want to show that cos and sin are differentiable in θ = 0. In Figure C.2

we have

|AB| = cos θ , |BD| = sin θ , |CD| = |BD|
cos θ

=
sin θ

cos θ
.

We have 0 < |BD| < |θ| < |CD| for |θ| < π
2

and |BD|
|CD| = cos θ → 1 for θ → 0. This

implies that | sin θ|
|θ| = |BD|

|θ| → 1 for θ → 0. As sin 0 = 0 this in turn proves that sin is
differentiable at 0 with derivative 1.
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Figure C.2: The length of the circle segment PD is θ and |BD| < |θ| < |CD| if
|θ| < π

2
.

We have |BC| = |CD| sin θ = sin2 θ
cos θ

so |BC|
θ

= | sin θ|
|θ|

sin θ
cos θ

→ 1 · 0 = 0 for θ → 0. As
|1− cos θ| < |BC| this implies that |1−cos θ|

|θ| → 0 for θ → 0. As cos 0 = 1 this in turn
proves that cos is differentiable at 0 with derivative 0.

For an arbitrary θ ∈ R we now have

cos(θ + h) = cos θ cosh− sin θ sinh ,

sin(θ + h) = cos θ sinh+ sin θ cosh .

We now have

d cos θ

dθ
=

d cos(θ + h)

dh

∣∣∣∣
h=0

= cos θ
d cosh

dh

∣∣∣∣
h=0

− sin θ
d sinh

dh

∣∣∣∣
h=0

= − sin θ ,

d sin θ

dθ
=

d sin(θ + h)

dh

∣∣∣∣
h=0

= cos θ
d sinh

dh

∣∣∣∣
h=0

+ sin θ
d cosh

dh

∣∣∣∣
h=0

= cos θ .
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The logarithm and exponential

One way of defining the natural logarithm, log : R+ → R, is the following.

Definition D.1. For x > 0 we put

log(x) =

∫ x

1

1

t
dt , x > 0 . (D.1)

The natural logarithm has the following basic properties:

Theorem D.2. The natural logarithm, log, satisfies

1. It is differentiable with derivative x 7→ 1
x
.

2. It is monotonically increasing, i.e., 0 < x < y ⇒ log(x) < log(y).

3. The image is R, i.e., log(R+) = R.

4. If x, y > 0 then log(xy) = log(x) + log(y).

Proof. 1. is the fundamental theorem of calculus (Theorem 2.61).
2. We integrate a positive function ( 1

x
> 0 for x > 0). So if 0 < x < y then

log(y)− log(x) =
∫ y

x
1
t
dt > 0, i.e., log(x) < log(y).

For 4. we let x, y > 0. The substitution t = xu shows that∫ xy

x

1

t
dt =

∫ y

1

1

xu
x du =

∫ y

1

1

u
du = log(y) .

So
log(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt = log(x) + log(y) .

Finally for 3. we note that for n ∈ Z Property 4 yields log(2n) = n log(2) and as
log(2) > log(1) = 0 this implies that log(2n) → ±∞ for n → ±∞. So the image is
all of R.

We see that log : R+ → R is bijective and hence has an inverse log−1 : R → R+.
We can defined the exponential function as this inverse:
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Definition D.3. The exponential function exp : R → R+ is exp = log−1.

It has the following properties,

Theorem D.4. The exponential function exp : R → R+ satisfies

1. It is differentiable with derivative exp.

2. It is monotonically increasing.

3. The image is R+.

4. For x, y ∈ R we have exp(x+ y) = exp(x) exp(y).

Proof. The last three properties follows immediately from the corresponding prop-
erties of log. So we only need to consider the first. If log(x) = y then exp(y) = x
and by Theorem 2.40 exp is differentiable and the derivative is

exp′(y) =
1

log′(x)
=

1(
1
x

) = x = exp(y) .

As log(1) = 0 we have exp(0) = 1 and as exp(x) exp(−x) = exp(x − x) =
exp(0) = 1 we have exp(−x) = 1

exp(x)
. If n ∈ N then exp(nx) = exp(x)n and

exp(−nx) = 1
exp(nx)

= 1
exp(x)n

= exp(x)−n. We also have exp(x) = exp
(
n 1

n
x
)
=

exp
(
1
n
x
)n so exp

(
1
n
x
)
= n
√

exp(x) = exp(x)
1
n . Combining this we see that exp

(
p
q
x
)
=

exp(x)
p
q for all p ∈ Z and all q ∈ N.

Definition D.5. Eulers constant is the number exp(1) and is denoted e, i.e., e =
exp(1).

As log(e) = log(exp(1)) = 1 we can also define e by the condition
∫ e

1
1
t
dt = 1.

For p ∈ Z and q ∈ N we have exp
(

p
q

)
= exp(1)

p
q = e

p
q .

If a > 0, p ∈ Z, and q ∈ N then a
p
q = (exp(log(a)))

p
q = exp

(
p
q
log(a)

)
. Using

the logarithm and the exponential we can define ax for any power x ∈ R:

Definition D.6. If a > 0 and x ∈ R then ax = exp(x log(a)). In particular
ex = exp(x).

We see that log(ax) = log(exp(x log(a))) = x log(a).

Definition D.7. If a > 0 then the logarithm with base a is defined as loga(x) =
log(x)
log(a)

.
In particular loge = log.

We see that loga(ax) = x, i.e., the maps x 7→ ax and loga are each other inverses.
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Exercises
Exercise D.1. Consider the proof of Theorem D.2. Why does log(2n) → ±∞ for
n → ±∞ implies that the image of log is all of R?

Exercise D.2. Prove the first three properties in Theorem D.4.

Exercise D.3. Let x ∈ R. Use induction to prove that exp(xn) = exp(x)n for all
n ∈ N.

Exercise D.4. Let x ∈ R. Prove that exp
(

p
q
x
)
= exp(x)

p
q for all p ∈ Z and all

q ∈ N.

Exercise D.5. Let a > 0 and x ∈ R. Use that ax = exp(x log a) to find the
derivative with respect to x, c.f. Example 2.19. Why is the function differentiable?

Exercise D.6. Let a ∈ R and x > 0. Use that xa = exp(a log x) to find the
derivative with respect to x, c.f. Example 2.19. Why is the function differentiable?

Exercise D.7. Let x > 0. Use that xx = exp(x log x) to find the derivative with
respect to x. Why is the function differentiable?
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C1 function, 25, 50
Ck function, 25, 56
C∞ function, 25, 56
kth derivative, 25, 56
k times differentiable, 25, 56

addition identities, 105
anti derivative, 39
arc-length, 62

bounded from above, 10, 89
bounded from below, 11, 89
bounded sequence, 10, 103

Cauchy’s mean value theorem, 28
closed set, 15
closed surface, 80
complement, 95
continuous, 19, 20, 43
continuous at a point, 17, 18, 43
convergent subsequence, 10, 103
converges, 7
countable, 94
curl, 75
curve, 62

derivative, 23, 25
differentiable, 25, 47
differentiable at a point, 22
differential, 48
directional derivative, 49
divergence, 70
Divergence theorem, 75
divergent, 7

ellipse, 42
Eulers constant, 108
exponential function, 107

flux, 72
fundamental theorem of calculus, 39

Gauss theorem, 75
gradient, 68

half lines, 90
Hesse matrix, 60
Hessian, 60, 68
Hessian matrix, 60
hyperbola, 43

infimum, 11, 89
integers, 85
integral, 35
intersection, 14
inverse function theorem, 31

Jacobian matrix, 48, 68

Laplace operator, 71
Laplacian, 71
level set, 42, 68
limes inferior, 12
limes superior, 12
limit, 7, 23
linear form, 68
linear map, 48
line integral, 63
local maximum, 26, 61
local minimum, 26, 61
logarithm with base a, 108
lower bound, 11, 89
lower sum, 32

maximum, 89
mean value theorem, 26, 38
minimum, 89
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natural logarithm, 107
natural numbers, 85
negative integers, 85
negative real numbers, 97
nested interval theorem, 6
non negative integers, 85
non negative real numbers, 97

open set, 14, 47
ordered field, 5, 6
ordering, 6

parabola, 43
parametrisation, 62, 66
partial derivatives, 50
polynomial, 26
positive integers, 85
positive real numbers, 97

quadratic form, 41
quadratic function, 49

rational numbers, 85
refinement, 32
regular curve, 63
regular surface, 66
relative closed, 15
relative open, 14
Riemann sum, 35
Rolle’s theorem, 26

saddle point, 62
sequence, 6
speed, 62
Stokes theorem, 75, 76, 79
subsequence, 6
substitution, 40
supremum, 11, 89
surface, 66

tangent, 23, 63
Taylor’s theorem, 29, 60
Taylor’s theorem with reminder, 30, 60
Taylor polynomial, 29
total ordering, 5, 6

uncountable, 94
uniformly continuous, 22
union, 14
upper bound, 10, 89
upper sum, 32

vector field, 67
velocity, 62
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